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We study the transport properties of the deconfined QCD matter in
pure SU(3) theory and full QCD with light and strange quark flavors. Ap-
plying the quasiparticle model to shear and bulk viscosities, as well as to
electrical conductivity, we analyze flavor and temperature dependence of
these parameters. The analytic expressions of the examined quantities are
derived from the kinetic theory under the relaxation time approximation.
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1. Introduction

It is known that the quark–gluon plasma (QGP) is a strongly-coupled
system [1] which can be reasonably described in terms of the ideal fluid dy-
namics. However, non-trivial transport properties of the non-equilibrated
QGP remain of great interest to the elementary particle physics. The shear
viscosity coefficient characterizes the resistance of a fluid against the mo-
mentum modifications, whereas the bulk viscosity reflects the response of
the system to a change of its volume. The electrical or heat conductivities
also reveal important information about the deconfined QCD matter. All
transport parameters of the plasma depend on the degrees of freedom and
the interactions between them. We present transport coefficients of the pure
SU(3) gauge theory and of the QGP with 2 light (up, down) and 1 heavier
(strange) quark flavors. For simplicity, we assume vanishing quark chemical
potential, µ = 0. The critical and pseudocritical temperatures are taken as
Tc = 260 MeV in pure Yang–Mills (YM) case and Tc = 155 MeV in full QCD
calculations.
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2. Quasiparticle model

The quasiparticle model (QPM) describes the quark–gluon plasma as
a system of quarks and gluons with dynamically generated temperature-
dependent masses, which carry all the interactions between the medium
constituents. Hence, the quasiparticles are regarded as weakly interacting
particles with effective masses. This assumption enables us to define equi-
librium thermodynamic variables as standard phase-space integrals over the
momentum-distribution functions. We consider the on-shell quasiparticles
propagating with medium-dependent dispersion relations, Ei =

√
k2 +m2

i .
The effective masses m2

i are obtained as

m2
i =

(
m0

i

)2
+Πi , (1)

with bare masses m0
g = 0, m0

l = 5 MeV, m0
s = 95 MeV and dynamically

generated self-energies Πi(G(T ), Nf) which depend on the running coupling
and the number of flavors. The effective coupling G(T ) is extracted from
lattice QCD (lQCD) data in the way that the quasiparticle model reproduces
the entropy density obtained from the lQCD simulations.

The approach presented in this section can be applied to YM thermody-
namics of pure gluonic plasma using the simplification Nf = dl,l̄ = ds,s̄ = 0.
More details and numerical results on the coupling and masses can be found
in [2].

3. Shear and bulk viscosities

To investigate the transport properties of the deconfined QCD matter,
we employ the expressions for transport parameters derived from the kinetic
theory in the relaxation time approximation [2–5]. The shear and bulk
viscosities read
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1

15T
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The values of the degeneracy factors di for quarks, antiquarks and gluons are
dl,l̄ = 12 for light flavors, ds,s̄ = 6 for strange quarks and dg = 16 for gluons.
The relaxation times τi explicitly depend on various two-body scatterings
between the constituents of the medium. The factor (1± f0

i ) contains ther-
mal distribution function for bosons (fermions) with the corresponding sign
(+ and −, respectively). In Eq. (3), the pressure and the energy density are
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calculated as for the ideal gas of massive quasiparticles. Different values of
the relaxation times and an additivity of the viscosity coefficients allow us
to calculate the components of the sums in Eqs. (2) and (3) separately, to
study the flavor dependence of the transport parameters.

Figure 1 shows the results on the shear viscosity to entropy density ratio
which characterizes the dissipation of the energy in the medium. On the
left, we present the results for pure Yang–Mills theory. The appearance of
a minimum in the η/s ratio is understood as a natural consequence of the
first-order phase transition in pure YM theory, whereas its value crucially
depends on the dynamical details embraced in the cross section and the en-
tropy density via the effective running coupling. The obtained smallness,
η/s ' 1/4π, came out from the model dynamics, without any fine-tuning of
the parameters. It is conceivable that since the underlying YM Lagrangian
is conformal, the dynamics compels the η/s to become nearly the KSS bound
conjectured based on the AdS/CFT correspondence. We compare our re-
sults to available lQCD data and the FRG approach, finding a remarkable
agreement with the first-principle calculations. In Fig. 1 (right), individual
contributions from different types of particles to the specific shear viscosity
of the QGP are shown. One can see that the main contribution to the total
ratio comes from the light quark sector. The presence of dynamical quarks
in the system significantly increases the values of the total η/s ratio and
smoothens its behavior near the crossover (in comparison to the pure SU(3)
results around the first-order phase transition).
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Fig. 1. Left: Shear viscosity to entropy density ratio for pure Yang–Mills theory in
the QPM (full circles). For comparison, the corresponding lQCD results were col-
lected. The horizontal line indicates the KSS-bound (1/4π) and the result obtained
by the functional diagrammatic approach is shown by the dotted line (all references
can be found in [2]). Right: Shear viscosity to entropy density ratio for full QCD
with Nf = 2 + 1 (full squares). Individual contributions coming from light quarks
(triangles), strange quarks (open squares) and gluons (circles) are given separately.
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We present the bulk viscosity to entropy density ratio in Fig. 2. The
results for pure SU(3) theory are shown in the left figure. The bulk viscosity
for quasigluon plasma appeared to be close to the results obtained within the
holographic approach for the bulk viscosity of black holes [6]. The general
tendency agrees with recent lattice QCD data [7]. In contrast to the specific
shear viscosity, the bulk viscosity to entropy density ratio has a peak in the
vicinity of the critical temperature and then vanishes as temperature grows.
The results obtained for Nf = 0 and Nf = 2 + 1 are close to each other
at lower temperatures and exhibit around a ten times difference already at
3T/Tc (unlike the shear viscosity where the difference between YM theory
and full QCD case is distinct in the explored temperature range). In the case
of the specific bulk viscosity of the QGP for Nf = 2 + 1 (Fig. 2, right), we
observe an intriguing similarity between the contributions of strange quarks
and gluons, although there is an apparent difference between them in the
case of the shear viscosity.
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Fig. 2. Left: Bulk viscosity to entropy density ratio for the pure YM theory ob-
tained in the QPM (full circles), as well as in the holographic QCD calculations [6]
(dashed line). Various lattice QCD data points are taken from [8], the recent one
is calculated by [7] (open triangles). Right: Bulk viscosity to entropy density ratio
of the QGP for Nf = 2+1. Full squares show the total ratio, whereas open bullets
represent contributions coming from different type of quasiparticles.

4. Electrical conductivity

Similarly to the viscosity coefficients, electrical conductivity was derived
within the kinetic theory [9] as follows:

σ =
1
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where electric charges of quarks are qu = −qū = 2/3 e and qd,s = −qd̄,s̄ =
−1/3e. Due to the different electric charges, the up and down quarks are
treated separately. Thus, the degeneracy factors are du,ū = dd,d̄ = ds,s̄ = 6.
Since gluons do not carry any electric charge, they do not contribute to
the electrical conductivity and in the case of Nf = 0, the system does not
conduct the electric charge at all.

The resulting electrical conductivity of the QGP is shown in Fig. 3.
On the left panel, we compare the values obtained within the presented
QPM with the other effective models, such as parton–hadron string dynam-
ics (PHSD), dynamical quasiparticle model (DQPM) and another model
with quasiparticle degrees of freedom. We find an agreement between QPM
results and two other effective studies (PHSD, DQPM), although there are
essential differences between them, such as the effective coupling or the
widths of quasiparticles. The apparent difference between our curve and
the dashed line comes mostly from the fact that the relaxation times in our
model depend on the quasiparticle masses, while the relaxation times in [9]
are taken as for massless particles. One also sees that our result appears in
between the several sets of the lQCD data. The right-hand side of Fig. 3
shows fractions of the electrical conductivity originated from the presence of
different particle species. The main contribution is given by the up quarks
due to their larger electric charge, while the down and strange quark contri-
butions have similar values because of the same electric charges.
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Fig. 3. Left: Total electrical conductivity of the QGP scaled with the tempera-
ture (full squares). Additionally, we show the results from the PHSD model (full
triangles) and DQPM (full diamonds) by [10]. Another QPM result and various
lQCD data are taken from [9]. Right: Ratio of the electrical conductivity to the
temperature for full QCD: total value (full squares) is compared to the particular
contributions from up (triangles), down (diamonds) and strange (open squares)
quarks.
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5. Conclusions

We studied the temperature and flavor dependence of the transport pa-
rameters of the QGP in pure YM theory and in QCD with 2+1 quark flavors
in a framework of the quasiparticle model and kinetic theory in the relax-
ation time approximation. The results for shear viscosity, bulk viscosity and
electrical conductivity were compared to the lattice gauge theory calcula-
tions and the data obtained within the other effective models. We find that
adding physical degrees of freedom essentially modifies the transport prop-
erties of the system, which might be important for future hydrodynamical
calculations.
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