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We consider the ππ-scattering problem in the context of the Kady-
shevsky equation. In this scheme, we introduce a momentum grid and
provide an isospectral definition of the phase shift based on the spectral
shift of a Chebyshev angle. We address the problem of the unnatural high
momentum tails present in the fitted interactions which reaches energies far
beyond the maximal center-of-mass energy of

√
s = 1.4 GeV. It turns out

that these tails can be integrated out by using a block-diagonal generator
of the SRG.
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1. Introduction

Scattering phase shifts is one of the most important sources of infor-
mation on the interaction between particles. In general, their theoretical
calculation amounts to solving integral equations such as the Lippmann–
Schwinger (LS) equation [1] in the non-relativistic case or the Bethe–Salpeter
equation (BSE) [2] in the relativistic one. In any case, a potential describ-
ing the interaction is required and, in general, the integrals involved must
be calculated numerically. The quality of the approximation implicit in the
numerical method employed is of crucial relevance for ensuring the desired
predictive power of the approach.
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Hamiltonian methods are very useful when treating hadronic reactions
as a few-body problem by means of the corresponding potentials. They have
the advantage that the observables do not depend on the basis used as the
spectrum is invariant under unitary transformations. Separable potentials
provide numerous advantages when solving the corresponding equations. It
often occurs, however, that separable potential that fits the interaction dis-
plays an annoying long momentum tail, not natural to the physical problem.

In this work, we consider the ππ-scattering problem and handle the long-
momentum tail issue by means of the similarity renormalization group (SRG)
for Hamiltonians [3, 4]. We present, furthermore, a new alternative method
for the calculation of phase shifts in a Hamiltonian framework [5].

2. Phase shifts and the spectral-shift method

Among the 3d-reductions of the BSE, the Kadyshevsky equation [6] is of
particular interest in the context of ππ interactions, as it can be easily ex-
tended to the three-body problem. The reaction matrix in the Kadyshevsky
scheme is given by

Rl
(
p′, p,

√
s
)

= Vl
(
p′, p

)
+−

∞∫
0

dq
q2

4E2
q

Vl (p
′, q)Rl(q, p,

√
s )√

s− 2Eq
, (1)

where l is the orbital angular momentum, s is the Mandelstam variable, and
the subscript q (or, analogously, p) in Eq indicates that Eq =

√
~q 2 +m2.

Scattering phase shifts δl(p) can be calculated from

− tan δl(p) =
π

8

p

Ep
Rl
(
p, p,
√
s
)
. (2)

The Hamiltonian version of Eq. (1) is the eigenvalue equation

HΨl(p) ≡ 2EpΨl(p) +

∞∫
0

dq
q2

4E2
q

Vl(p, q)Ψl(q) = E Ψl(p) . (3)

In general, it needs to be solved numerically. We choose the Gauss–
Chebyshev quadrature

pn =
Λnum

2
[1− cosφn] , wn =

Λnum

2

π

N
φn , φn =

π

N

(
n− 1

2

)
,

(4)
where n = 1, . . . , N . The variable φn is the Chebyshev angle, and Λnum =
pmax is a high-momentum UV cutoff.
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We consider the separable model potential given in Ref. [7], which fits
experimental data in the low-energy regime. One notices that such potentials
present long-momentum tails that reach energies beyond the experimental
region. This issue will be addressed in the next section.

On the momentum grid, Eq. (3) becomes

2EnΨn +
∑
k

wk
p2k

4E2
k

Vn,kΨk =
√
s Ψn . (5)

It is already known that phase shifts can be determined from the spec-
trum of the Hamiltonian, as it has been explained by DeWitt [8], and Fukuda
and Newton [9]. They related the shift produced in the spectrum after in-
troducing the interaction to the scattering phase shifts appearing in the
S-matrix. Such a relation is based on the use of an equidistant energy and
momentum grids, respectively. Since our Gauss–Chebyshev grid is equidis-
tant in the Chebyshev angle, the corresponding relation is [5, 10]

δn = −πΦn − φn
∆φn

≡ −π∆Φn
∆φn

, (6)
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Fig. 1. (Colour on-line) ππ-scattering phase shifts in the S0 channel calculated
with the φ-shift method using a grid of N = 7, 5, and 4 points (black/blue dots)
compared with the model fit (grey/green line).
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where ∆φn = π
N , and the “interacting” angles Φn are calculated form the

Hamiltonian eigenvalue
√
s = 2En =

√
m2 + P 2

n , inverting Eqs. (4) after
replacing pn by Pn.

Figure 1 shows scattering phase shifts in the LI = 00 channel calculated
using Eq. (6) for different number of grid points, compared with the exact
solution that fits the data in the inelastic range1. The calculation starts
slightly differing form the exact solution for a grid of 5 points. This is an
extremely small number as it can be noticed by comparing with results ob-
tained using other standard methods, such as e.g. the Lippmann–Schwinger
equation [10].

3. Similarity renormalization group and scattering

In order to calculate the phase shifts in the experimental range shown
in figure 1, we used the separable model potentials given in Ref. [7], which
fit the experimental data in the range of interest. The annoying fact is that
such potentials present very long tails (even up to 30 GeV), which involve
energies far beyond the physical problem (only ∼ 1.5 GeV). In fact, in order
to describe scattering phase shifts in the range given in the left panel of
figure 2, one needs to calculate them in the entire range reached by the
potential, as it is illustrated in the right panel of the same figure.
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Fig. 2. (Colour on-line) Phase shifts calculated using the φ-shift method (black/blue
dots) compared with the experimental data [11] (grey/red dots with error bars) and
with the model fit (solid, light grey/green line). The left panel shows the experi-
mental region. The right panel shows the energy region covered by the Hamiltonian.

This issue is not only unnatural from the physical point of view, it implies
also an undesired computational load which does not provide any additional
information about the interaction.

1 Cf. also the case with a larger number of points in the left panel in figure 2.
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We address this issue by means of the SRG [3, 4, 12]. This procedure
is based on the idea that it is possible to apply a (scale dependent) uni-
tary transformation on a given initial Hamiltonian in such a way that after
a continuous evolution along the running of the scale parameter, the Hamil-
tonian is transformed into a more convenient basis. Similarity transforma-
tions preserve the eigenvalues and, as a consequence, the scattering phase
shifts obtained from the spectrum remain invariant. The SRG evolution of
the Hamiltonian obeys

dHt

dt
= [[Gt, Ht], Ht] , (7)

where t is the renormalization-group parameter and Gt is the generator
which determines the basis into which the running Hamiltonian, Ht, is
transformed2. Different choices of Gt involve different bases for the effective
Hamiltonian. In this work, we consider a bloc-diagonal generator, with the
structure G = PHP +QHQ, where P and Q are the orthogonal projectors,
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Fig. 3. (Colour on-line) Phase shifts in different δlI channels calculated with the
φ-shift method using the original Hamiltonian (black/dark blue dots) and with the
block below the cutoff (light-grey/light-blue dots), compared with the model fit
(solid, green line). The calculation has been made with an initial grid of 50 points.

2 Although the SRG has been mostly used in nuclear physics, recent progress has been
made in the last few years concerning its application to QCD [13–15].
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P = θ(Λ− p) and Q = θ(p−Λ). This transformation defines two subspaces
separated by a cutoff Λ, and converts the initial Hamiltonian into a block-
diagonal matrix. The cutoff (Λ ∼ 1400 GeV) is chosen in such a way that
the energy range beyond the experimental region decouples form the other
one. The matrix elements relevant to the physical problem remain now in
the small block and the scattering phase shifts can be calculated from the
eigenvalues of this reduced matrix.

Figure 3 shows the phase shifts calculated in channels lI = 00, 11, and
02, using the φ-shift method with the initial 50×50 matrix (black/dark blue
dots) and with the reduced space (11×11 matrix) of the evolved Hamiltonian
(light-grey/light-blue dots). While the results are the same, the number of
computational operations needed to obtain them is much smaller in the
latter case.

4. Conclusions

In this work, we have presented two different methods that we have
combined in a convenient way in order to calculate scattering phase shifts
in a remarkable simple fashion and with a minimal computational cost.

On the one hand, we have presented the newest version of the so-called
spectral-shift methods for the calculation of scattering phase shifts. Alike
the energy-shift [8] and the momentum-shift method [9], it is based on the
displacement of the grid associated with the integration variable that occurs
after the interaction, in an analogous way to what happens in the energy
levels appearing in the scattering process in a box.

The φ-shift method [5], suitable to the Chebyshev momentum grid em-
ployed here, yields results with exceptional accuracy, even when one consid-
ers a grid with a small number o points. The method appears as a useful
tool that is computationally cheaper than other conventional methods.

On the other hand, we have used the SRG method to transform the orig-
inal Hamiltonian matrix into a similar one (with the same eigenvalues) with
block-diagonal structure. This effective Hamiltonian distinguishes two en-
ergy regions separated by a cutoff. This allows us to select the experimental
region and proceed with the calculation of scattering phase shifts using only
the matrix elements of the block below the cutoff. This procedure simplifies
even more the calculation.

To construct the Hamiltonian employed in all these calculations, we have
chosen the Kadyshevsky scheme, in which the three-body problem is easy
to implement. Once the ππ interaction is understood in this framework, one
can start considering the study of πππ interaction appearing, i.e. in the ω
or the A1 decays, among other problems.
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