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Within the AdS/CFT correspondence, for description of the N = 4
super Yang–Mills theory in four dimensions, one needs not only low-energy
supergravity on AdS5 but also the whole infinite tower of massive Kaluza–
Klein (KK) states on AdS5×S5 which appear after the KK compactifica-
tion on five-dimensional sphere. The latter aspect is usually ignored in
phenomenological AdS/QCD models. The emerging massive 5D fields on
AdS5 are dual to higher-dimensional operators in 4D gauge theory, with
masses being known polynomial functions of canonical dimensions of these
operators. Motivated by this observation, we propose to calculate the spec-
trum of radially excited hadrons in bottom-up holographic QCD models as
spectrum of zero KK modes of massive 5D fields dual to higher dimen-
sional operators in QCD. A relevant physical motivation is suggested. The
radial states with growing masses are then enumerated by growing dimen-
sions of interpolating QCD operators. We tested the proposal in the Soft
Wall and Hard Wall holographic models in the sector of light mesons. The
spectrum of Soft Wall model turns out to be unchanged in the new descrip-
tion. However, in the Hard Wall model, our approach is shown to lead to a
much better phenomenological spectrum of vector radial excitations than
the traditional description.
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1. Introduction

In the holographic approach to QCD, the radially excited hadrons are
described as Kaluza–Klein (KK) modes along the fifth dimension of 5D
Anti-de Sitter (AdS) space. Such a description looks questionable from the
physical point of view — hadrons are highly complicated dynamical objects
in QCD, while the KK excitations are rather simple states arising from ex-
tra dimension. The dramatic difference between the KK-like and QCD-like
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states is discussed in detail in Ref. [1]. The main point consists in obser-
vation that the former are deeply bound states sensitive to short-distance
interactions and at collisions producing events with mostly spherical shapes,
while the latter are extended states sensitive to large-distance interactions
and producing characteristic jets. The underlying reason is that the latter
are defined at small ’t Hooft coupling λ, while the former at large λ where
the existence of holographic duality can be motivated. The theories at small
and large λ turn out to be qualitatively different.

We propose a possible way out from theoretical difficulties with the KK
modes in the holographic hadron spectroscopy. Our proposal consists in ex-
ploiting the higher dimensional QCD operators instead of higher KK modes
— one should consider an infinite number of operators with growing canon-
ical dimension ∆ for each set of quantum numbers, find the normalizable
solutions of equation of motion in a holographic model for the corresponding
dual 5D field for each∆, and keep only solution with the smallest eigenvalue.
As a result, each solution will be in one-to-one correspondence with some
QCD operators. This approach looks different from the standard bottom-
up AdS/QCD models in which an infinite number of normalizable solutions
(KK modes) corresponds to only one QCD operator — usually to an oper-
ator of leading twist 2 [2]. We will demonstrate, however, that in the case
of Soft Wall (SW) model, the arising spectrum is essentially the same as in
the standard approach. In the Hard Wall (HW) model, the spectrum be-
comes different and rises much slower with excitation number qualitatively
approaching the rise of experimental radial trajectories.

2. The Soft Wall model

For demonstration of our main idea, we will use the simplest Abelian
version of the SW model [2] defined by the 5D action (partly different real-
izations of this model are proposed in Ref. [3])

S = c2
∫

d4x dz
√
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where g = |detgMN |, FMN = ∂MVN − ∂NVM , M,N = 0, 1, 2, 3, 4, c is a
normalization constant for the vector field VM , and the background space
represents the Poincaré patch of the AdS5 space with the metric

gMNdx
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z2
(
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µdxν − dz2
)
, z > 0 . (2)

Here, ηµν = diag(1,−1,−1,−1), R denotes the radius of AdS5 space, and
z is the holographic coordinate which is usually interpreted as the inverse
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energy scale. At each fixed z, one has the metric of flat 4D Minkowski space.
According to the standard prescriptions of AdS/CFT correspondence [4, 5],
the 5D mass m5 is determined by the behavior of p-form fields near the UV
boundary z = 0,

m2
5R

2 = (∆− p)(∆+ p− 4) , (3)

where ∆ means the scaling dimension of 4D operator dual to the correspond-
ing 5D field on the UV boundary. We consider the vector case, thus p = 1
and m2

5R
2 = (∆ − 1)(∆ − 3). The minimal value of dimension for vector

operator in QCD is ∆ = 3 that, according to (3), corresponds to massless
5D vector fields which are usually considered in the SW models. However in
general, QCD operators interpolating vector mesons can have higher canon-
ical dimensions, in particular, the “descendants” preserving the chiral and
Lorentz properties will have dimensions [6]

∆ = 3 + 2k , k = 0, 1, 2, . . . (4)

The 4D mass spectrum of KK modes can be found, as usual, from
the equation of motion accepting the 4D plane-wave Ansatz VM (xµ, z) =
eipxv(z)εµ with the on-shell, p2 = m2, and transverse, pµεµ = 0, conditions.
In addition, we will imply the condition Vz = 0 for the physical components
of 5D fields. For massless vector fields, this is equivalent to the standard
choice of axial gauge due to emerging gauge invariance [2]. The ensuing from
action (1) equation of motion is

∂z

(
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∂zvn

)
=

(
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5R
2
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− m2
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z
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e−az

2
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The particle-like excitations correspond to normalizable solutions of Sturm–
Liuville equation (5). It is known that they form an infinite discrete set
vn(z). The given property becomes more transparent after the substitution

vn = z1/2eaz
2/2ψn , (6)

which transforms Eq. (5) into a form of one-dimensional Schrödinger equa-
tion

−∂2zψn +
(
a2z2 +

1 +m2
5R

2 − 1/4

z2

)
ψn = m2

nψn . (7)

The mass spectrum of the model is given by the eigenvalues of Eq. (7)

m2
n = 2|a|

(
2n+ 1 +

√
1 +m2

5R
2

)
, n = 0, 1, 2, . . . (8)
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Using Eq. (3) for p = 1, the spectrum can be rewritten as

m2
n = 2|a| (2n+∆− 1) . (9)

Substituting (4) into this spectrum, we arrive at a remarkable relation

m2
n = 4|a| (n+ k + 1) , n, k = 0, 1, 2, . . . , (10)

which demonstrates that within the standard SW holographic model, the
description of radial spectrum of vector mesons as zero KK modes of 5D
fields dual to higher dimensional operators is essentially the same as by KK
modes stemming from a 5D field dual to the operator of lowest dimension
(the usual vector current) — the numbers n and k can be interchanged. This
means that we are allowed to keep only the lightest KK mode, n = 0, and
interpret the spectrum as arising from coupling the higher radially excited
states to higher dimensional operators constructed from the quark and gluon
fields in QCD. It is not difficult to show that the same property holds for
other integer spins [6].

The normalized eigenfunctions corresponding to spectrum (10) are

φ(k)n =

√
2n!

(1 + 2k + n)!
e−|a|z

2 (|a|z2)1+k L1+2k
n

(
|a|z2

)
, (11)

where Lαn(x) are associated Laguerre polynomials. Here, the numbers n and
k are not interchangeable — only the large z asymptotics depends on the
sum n+ k (because Lαn(x) ∼ xn at large x). The number of zeros, however,
is controlled by n (as the polynomial Lαn(x) has n zeros). By setting n = 0,
i.e. by keeping the zero KK mode only, we choose the wave function without
zeros in holographic coordinate. This wave function is the least “entangled”
with the 5th holographic dimension and thereby is the least sensitive to
deviations from the AdS structure. The zero KK mode looks thus the most
reliable in the phenomenological holographic approaches.

3. The Hard Wall model

Let us apply our method to the HW holographic model [7] in the case of
gauge arbitrary spin fields. Actually, this analysis in the HW model was car-
ried out for fields dual to twist-2 operators in Ref. [8], we will just generalize
it to arbitrary twists. The resulting equation of motion is tantamount to
making the substitution φ(J) = z4−J−∆φ̃(J) (the field φ̃(J) becomes constant
at the UV boundary z → 0) in the corresponding equation of motion for
arbitrary spin in Ref. [8] and drop the 5D mass term in the axial gauge. We
get

−∂z
(
z1−2(∆−2)∂zφ̃

(J)
n

)
= m2

nz
1−2(∆−2)φ̃(J)n . (12)
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The normalizable solution satisfying φ̃(J)(0) = 0 is

φ̃(J) ∼ z∆−2J∆−2(mz) . (13)

The Dirichlet boundary condition leads to the following equation for discrete
spectrum:

J∆−3(mnzm) = 0 , (14)

where the property of Bessel functions ∂x (xαJα) = xαJα−1 was exploited.
Setting ∆ = J + 2 in Eq. (14), we obtain the equation of Ref. [8] for spec-
trum of higher spin mesons interpolated by twist-2 operators. For arbitrary
twist, we get the same pattern of degeneracy between higher spin and ra-
dial excitations as in the SW model. The sequence of roots of Eq. (14) for
z−1m ≈ 323 MeV and m0 = 776 MeV is mnzm ≈ {2.4, 3.8, 5.1, 6.4, 7.6, . . . }.
It leads to the mass spectrum

mn ≈ {776, 1234, 1653, 2056, 2452, . . . } . (15)

In Ref. [8], spectrum (15) was obtained for the higher spin excitations;
within our approach, it coincides with the spectrum of radially excited spin-1
ρ-mesons. Spectrum (15) predicts five ρ-mesons below 2.5 GeV as expected
in the phenomenology [9], while the standard HW model does only two [7].

It is curious to note that spectrum (15) interpolates with a good precision
the experimental positions for clusters of light non-strange meson resonances
arising from approximate mass degeneracies between radial and spin (or
orbital) excitations [10].

4. Concluding discussions

The approach proposed in the present work may be interpreted as a
simple tool establishing a direct relation between certain gauge-invariant
QCD operator (or a set of) and a hadron resonance with a definite mass. In
reality, each QCD operator has couplings to all hadron states with quantum
numbers corresponding to this operator. Indeed, by calculating the two-
point correlators via the standard AdS/CFT prescriptions, we will get the
infinite number of pole terms corresponding to higher KK modes which
provide “meromorphization”. However, in our interpretation, the accuracy of
holographic models is not enough to “resolve” them as real excited hadrons,
the SW model becomes an exception (at least, until modifications of metric
and background are introduced). A somewhat similar situation takes place
in lattice simulations: In order to “resolve” radially excited hadron states,
one invokes higher dimensional QCD operators [11].
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In the holographic dual picture, something should hamper the excitation
of higher KK modes along the fifth dimension in AdS5 space. A possible
mechanism has recently been suggested in Ref. [12]: Gravity in AdS dresses
free propagators on the quantum level leading to a universal exponential
suppression of propagators in the infrared region. In other words, the AdS
space turns out to be opaque to propagation in deep infrared region. This
naturally locks the excitation of any higher KK mode.

From the viewpoint of original AdS/CFT correspondence, the KK states
are not gone. We recall that in order to describe theN = 4 super Yang–Mills
theory in four dimensions, one must use not only low-energy supergravity on
AdS5 but also the whole infinite tower of massive KK states on AdS5×S5 [4]
which appear after the KK compactification on five-dimensional sphere. It
becomes natural to suggest that the 5D fields dual to higher-dimensional
operators in 4D gauge theory correspond to these KK states from S5.
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