
Vol. 14 (2021) Acta Physica Polonica B Proceedings Supplement No 1

THREE NONRELATIVISTIC QUARKS
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THE DIFFERENCE IN BARYON SPECTRA?∗
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We used the U(1)⊗SO(3)rot ⊂ U(3) ⊂ SO(6) hyperspherical harmonics
of I. Salom, V. Dmitrašinović, Nucl. Phys. B 920, 521 (2017). to calculate
the energy-spectrum of three nonrelativistic quarks in the (interpolation of
the) lattice QCD potential. We show that the first clear difference between
the ∆, or the Y-string confinement and the lattice QCD potential can be
seen only in the third shell of excited states. This is beyond experimental
access, even in the light-quark sector. We also briefly discuss the role of
relativity.
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1. Introduction

The form of the three-heavy-quark potential in (lattice) QCD is substan-
tially better known after the recent lattice work by Sakumichi and Suganuma
[1], and by Koma and Koma [2]. The form of this potential has been anal-
ysed in terms of hyperspherical variables by Leech et al. [3, 4], as well as in
another contribution to this workshop [5], where an upper and a lower bound
(a band of small width) on the triangle-shape dependence of the confining
part of the potential has been established.

These upper and lower bounds on the potential in two sectors/lines in
the shape space can be extrapolated to the whole shape space due to its
periodicity, and certain inequalities can be inferred about the value of the
v66 hyperspherical expansion coefficient. In this light, one may even discuss
the consequences of this lattice potential in three-heavy-quark spectroscopy.
The aim of this work is to briefly discuss the effects of the lattice QCD
3-quark potential, as extracted in Refs. [3–5], in the heavy-baryon spectrum,
as calculated in the hyperspherical approach, see Refs. [6–9].
∗ Presented at Excited QCD 2020, Krynica Zdrój, Poland, February 2–8, 2020.
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2. The nonrelativistic quantum-mechanical three-body problem
in hyperspherical coordinates

2.1. O(6) hyperspherical coordinates

Any (spin-independent) three-body potential must be invariant under:
(1) translations; (2) overall (“ordinary O(3)”) rotations; (3) permutations, if
three identical particles are involved. Thus, due to (1), it may depend only
on the relative position (Jacobi) vectors ρ = 1√

2
(x1 − x2), λ = 1√

6
(x1 +

x2−2x3); (2) is a function of three scalar products of the two vectors, ρ ·λ,
ρ2, and λ2; (3) it must be permutation-symmetric.

It can be transcribed in hyperspherical coordinates as f(R,Ω5), where
R =

√
ρ2 + λ2 is the hyperradius, and five angles Ω5 that parametrize a hy-

persphere in the six-dimensional Euclidean space. Three (Φi; i = 1, 2, 3) of
these five angles (Ω5) are just the Euler angles associated with the orienta-
tion in a three-dimensional space of a spatial reference frame defined by the
(plane of) three bodies; the remaining two hyperangles describe the shape
of the triangle subtended by three bodies; they are functions of three in-
dependent scalar three-body variables, e.g., ρ · λ, ρ2, and λ2. One linear
combination (ρ2 +λ2) of the two variables is already taken by the hyperra-
dius R, so the shape-space is two-dimensional, and topologically equivalent
to the surface of a three-dimensional sphere. We define the hyperangles

(α, φ) as (sinα)2 = 1 −
(

2ρ×λ
R2

)2
, tanφ =

(
2ρ·λ

ρ2−λ2

)
, which reveal the full

S3 permutation symmetry of the problem: the angle α does not change
under permutations, so that all permutation properties are encoded in the
φ-dependence of the wave functions. This leads to permutation-adapted
hyperspherical harmonics, as explained in Refs. [6, 7] wherein specific hy-
perspherical harmonics used here are displayed.

2.2. O(6) harmonics

Labelling the O(6) hyperspherical harmonics with labels K, the
Abelian hyperangular momentum quantum number Q conjugated with the
Iwai angle φ, the (total orbital) angular momentum quantum numbers L and
Lz = m, and ν which is the multiplicity label that distinguishes between hy-
perspherical harmonics with remaining four quantum numbers that are iden-
tical, as defined in Refs. [6, 7], corresponds to the subgroup chain U(1) ⊗
SO(3)rot ⊂ U(3) ⊂ SO(6). We expand the wave function Ψ(R,Ω5) in terms
of hyperspherical harmonics YK[m](Ω5), Ψ(R,Ω5) =

∑
K,[m] ψ

K
[m](R)YK[m](Ω5).



Three Nonrelativistic Quarks in the Lattice QCD Potential: . . . 123

2.3. Hyperspherical expansion of three-body Schrödinger equation

The hyperspherical harmonics turn the Schrödinger equation of three
particles in a factorizable three-body potential V (R,α, φ) = V (R)V (α, φ)
into a set of coupled hyperradial equations

− 1

2µ

[
d2

dR2
+

5

R

d

dR
− K(K + 4)

R2
+ 2µE

]
ψK[m](R)

+ Veff(R)
∑

K′,[m′]

CK K′

[m][m′]ψ
K′

[m′](R) = 0 (1)

with a hyperangular coupling coefficients matrix CK K′

[m][m′] defined by

Veff(R)CK
′ K

[m′][m] =
〈
YK′[m′](Ω5)

∣∣∣V (R,α, φ)
∣∣∣YK[m](Ω5)

〉
= V (R)

〈
YK′[m′](Ω5)

∣∣∣V (α, φ)
∣∣∣YK[m](Ω5)

〉
. (2)

Factorizability of the potential is a simplifying assumption that leads to
analytic results in the energy spectrum. It holds for the power-law ones, but
also other homogeneous ones.

2.4. Hyperspherical expansion of three-body potentials

The hyperangular part V (α, φ) of a factorizable potential can be ex-
panded in terms of O(6) hyperspherical harmonics with zero angular mo-
menta L = m = 0 as

V (α, φ) =

∞∑
K,Q

v3-body
K,Q YKQν00 (α, φ) , (3)

where
v3-body
K,Q =

∫
YKQν∗00 (Ω5)V (α, φ) dΩ(5) (4)

leading to

Veff(R)CK
′′ K′

[m′′][m′] = V (R)

∞∑
K,Q

v3-body
K,Q

×
〈
YK′′[m′′](Ω5)

∣∣∣YKQν00 (α, φ)
∣∣∣YK′[m′](Ω5)

〉
. (5)

In the case of three identical particles, the sum runs only over double-even-
order (K = 0, 4, . . .) O(6) hyperspherical harmonics with zero value of the
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democracy quantum number G3 = Q = 0, as well as over K = 6, 12, 18 . . .
O(6) hyperspherical harmonics with democracy quantum number G3 ≡ Q ≡
0 (mod 6), always with vanishing angular momentum L = m = 0.

The numerical values for the first four allowed (nonvanishing) v3-body
K,Q

coefficients for K ≤ 11, in the Y- and ∆-string and Coulomb potential’s
hyperspherical expansions are tabulated in Table I. All other coefficients
vanish for K < 12. Smallness of the coefficient v6,±6(Y-string) indicates (an
additional) dynamical symmetry of the Y-string potential.

TABLE I

Expansion coefficients vKQ of the Y- and ∆-string as well as of the Coulomb and
Logarithmic potentials in terms of O(6) hyperspherical harmonics YK,0,0

0,0 , for K =

0, 4, 8, respectively, and of the hyperspherical harmonics Y6,±6,0
0,0 .

(K,Q) vKQ(Y-string) vKQ(∆-string) vKQ(CM-string) vKQ(Coulomb)

(0,0) 8.22 16.04 16.04/
√

3 20.04
(4,0) −0.398 −0.445 −0.445/

√
3 2.93

(6,±6) −0.027 −0.14 0.14/
√

3 1.88
(8,0) −0.064 −0.04 −0.04/

√
3 1.41

3. Consequences for the low-lying spectrum

The lowest-lying states in which the energy splittings depend on the v66

coefficient are the odd-parity resonances in the K = 3 shell. In Ref. [8], one
finds that only two pairs of levels in the K = 3 shell are split by the v66

coefficient [
20, 1−

] 1

π
√
π

(
v00 +

1√
3
v40 −

2

7
v66

)
,

[
56, 1−

] 1

π
√
π

(
v00 +

1√
3
v40 +

2

7
v66

)
,

[
20, 3−

] 1

π
√
π

(
v00 −

√
3

7
v40 − v66

)
,

[
56, 3−

] 1

π
√
π

(
v00 −

√
3

7
v40 + v66

)
. (6)

In Table I, one can find the hyperspherical harmonic expansion coefficients
of several standard potentials. In a separate contribution to this conference
[5], we have analysed the lattice QCD data from Refs. [1, 2] in terms of
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permutation-adapted hyperspherical variables. We found that the confining
lattice QCD potential lies roughly half-way between the pure Y-string and
the pure ∆-string within the region of acute triangles. This allows us to set
an upper and a lower bound on the value of the lattice coefficient: −0.14 ≤
v66 ≤ −0.027 using the values from Table I. Unfortunately, no K = 3 shell
levels have been experimentally identified among the heavy-quark baryons
as yet [12].

One possibility is to search for K = 3 states among light-quark baryons
[12], which, however, involve significant contributions from relativity. In
order to get a feeling for, or at least the sign of relativistic corrections,
we shall employ a special case of the three-body problem: the extreme-
relativistic three-body harmonic oscillator.

4. Extreme-relativistic three-body harmonic oscillator

The (extreme) relativistic three-quark Hamiltonian in configuration space
is the ma → 0 limit of

H =
∑
a

√
m2
a + p2

i +
k

2

(
ρ2 + λ2

)
(7)

with the confining 3-body harmonic oscillator potential VHO. The Hamilto-
nian in momentum space and CM frame reads

H̃ =
k

2

(
∂2

∂p2
ρ

+
∂2

∂p2
λ

)
+

3∑
i=1

|pi| ,

which, after the substitutions pρ ↔ ρ and pλ ↔ λ, is equivalent to the
(nonrelativistic) Schrödinger equation

H̃Ψ̃ = ẼΨ̃

for three identical particles with a mass m = k and interacting with a lin-
early rising “CM-string” potential with unit string tension σ = 1. As we
have developed hyperspherical harmonic methods [6, 7, 9] to deal with such
three-body Schrödinger equations, we simply use the solution worked out in
Ref. [11]. In Table I, we can see that the v66 coefficient has opposite signs in
the Y- and ∆-string potentials, on the one hand, and the CM-string, i.e., in
the relativistic case and the Coulomb one, on the other. Thus we see that the
relativistic effects, as well as the residual QCD Coulomb interaction, may
reduce or even annihilate the ∆-string effects, which makes an identification
of the confining potential more difficult.
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5. Discussion and conclusions

We have shown how the lattice QCD data interpreted in terms of the
hyperspherical variables can be used to put bounds on the mass-splittings of
certain higher-lying odd-parity baryons using O(6) hyperspherical harmon-
ics.

The Serbian Ministry of Science and Technological Development sup-
ported V.D. under grant numbers OI 171037 and III 41011, and I.S. under
grant number OI 171031.
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