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In this paper, we review our recent work where we determine with
precision the parameters of the much debated lightest strange resonance
κ/K∗

0 (700) using as an input a constrained dispersive data analysis on
πK → πK and ππ → KK̄. For this, we use forward and other sets of
partial-wave dispersion relations obtained either from fixed-t or hyperbolic
dispersion relations with different subtractions. Partial-wave hyperbolic
dispersion relations are then used to extrapolate to the complex plane and
establish in a model-independent way the existence of a pole associated
to the κ/K∗

0 (700), and to obtain precise values for its mass, width and
coupling to πK.
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1. Introduction

The very existence of the lightest strange resonance, the so-called κ or
K∗0 (700) meson, has been the matter of intense debate over almost four
decades and, according to the Review of Particle Physics [1], still “Needs
Confirmation”. Most of the information on strange resonances below 2 GeV
comes from πK scattering data. However, since this process is only ob-
served indirectly as a sub-process in πN → πKN ′, it is affected by large
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systematic uncertainties, and the resulting data sets often show large in-
consistencies between one another and even within the same set. For many
years, this meant that semi-quantitative analysis in terms of simple mod-
els was considered good enough, yielding large model dependencies in the
resonance parameters, or even questioning its existence.

Nevertheless, there is a mathematically rigorous definition of a resonance,
which is process- and model-independent. It is given by the appearance
of an associated pole sitting in the second Riemann sheet of the complex
plane of any amplitude in which the resonance appears. The pole position
is related to the resonance mass and width by √spole ' MR − iΓR/2. For
narrow resonances, their pole lies near the real or physical axis and, when the
resonance is isolated from other resonances or analytic structures, it yields
the characteristic peak seen in experiments. Only in such cases, simple
models that describe data around that peak, like the familiar Breit–Wigner
formula, provide good approximations to the pole position. However, for
wide or overlapping resonances, or when they are close to threshold cuts
or other analytic structures, simple models are unreliable to determine the
existence and properties of a resonance.

Both these problems — conflicting data sets and model-dependent poles
— are solved by dispersion relations. Here, we review our recent use of such
relations as constrains to obtain precise and consistent parameterizations
of πK → πK and ππ → KK̄ data, which we next used as an input for
partial-wave hyperbolic dispersion relations (PWHDR) to obtain a model-
independent precise determination of the κ/K∗0 (700) pole from data [2].

2. Our series of works

Over the last few years, we have published a series of works with the aim
of obtaining reliable and precise πK and ππ → K̄K data parameterizations
from which to extract strange resonance poles. Our methods and many of
our preliminary results have been reported in this conference series and now
we present the final one for the κ/K∗0 (700).

In particular, in [3], we showed that simple unconstrained fits to πK →
πK data on S, P,D, F partial waves up to 1.8 GeV are inconsistent with
Forward Dispersion Relations (FDR), even when carefully evaluating sys-
tematic uncertainties. Nevertheless, we provided a set of Constrained Fits
to Data (CFD) satisfying a complete isospin set of FDR up to 1.6 GeV.

However, FDRs do not allow for a continuation to the complex plane
for partial waves. As a substitute, we resorted to a powerful technique [4]
that relies on the convergence on the complex plane of sequences of Padé
approximants built from data. Since this method does not rely on a choice
of resonance parameterization, it avoids such a kind of model dependence.
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In particular, there is no need for the assumption that the residue is fixed
by the pole position as in a Breit–Wigner-like formula, which is customary
in most strange resonance studies. However, since some truncation of the
Padé is needed, the pole determination is affected by a systematic uncer-
tainty, although smaller than the statistical one. Thus, the “Padé result”
for the κ/K∗0 (700) pole we obtained in [5] with this method is shown in
Fig. 1. Almost transparent gray symbols represent Breit–Wigner-like pa-
rameterizations, which are not appropriate for so wide resonances and also
violate chiral symmetry constraints. More sound T-matrix pole determina-
tions use analytic or dispersive methods, frequently with some sort of chiral
symmetry constraints. Some of those listed in the RPP [1] are also shown
in Fig. 1. It is worth mentioning that our “Padé result” confirmed, with
analytic methods and data, that the κ pole was closer to 700 MeV and thus
triggered the change of name in the RPP from K∗0 (800) to K∗0 (700). As a
final remark, we would like to emphasize that this method can be used both
in the elastic and the inelastic region. Actually, we also provided results for
other five strange resonances in the inelastic region, which were reported in
the previous edition of this conference.

Fig. 1. (Color online) K∗
0 (700) pole positions from the RPP [1]. We also show

our results [2] using the Roy–Steiner equations, and as an input our UFD or CFD
parameterizations. Red and blue points use for F− a once-subtracted or an unsub-
tracted dispersion relation, respectively. This illustrates how unstable pole deter-
minations are when using simple fits to data. Only once the Roy–Steiner equations
are imposed as a constraint (CFD), both pole determinations fall on top of each
other. We also provide the modulus of the g coupling to πK.
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As a matter of fact, a simple continuation of our CFD parameterization
constrained with FDRs yields a fairly reasonable pole, labeled “Conformal
CFD” in Fig. 1, but since it is based on a particular parameterization, it is
model-dependent. Incidentally, in [6] we calculated dispersively (not fit) the
κ/K∗0 (700) Regge trajectory, using either our CFD or Padé pole position
as the only input. The resulting κ/K∗0 (700) trajectory does not come out
linear with respect to the mass squared and has a slope much smaller than
that of ordinary mesons. This supports the non-qq̄ dominant nature of
the κ/K∗0 (700) and, therefore, of the light scalar meson nonet. This is a
consequence not only of being wide, but of its residue (i.e. its coupling
to πK), being related to the mass and width differently than for ordinary
resonances (like narrow Breit–Wigner-like resonances).

The best determination so far was the dispersive study of Descotes-
Genon et al. [7]. There, PWHDR were used to continue to the complex
plane a numerical solution, not a data fit, of the Roy–Steiner equations
obtained from fixed-t dispersion relations. Actually, the pole in [7] could
be considered a prediction, since the data is not used around the nominal
κ/K∗0 (700) mass, but just at higher energies and from other partial waves.
Despite this rigorous result obtained in 2006, the 2018 RPP still considers
that the κ/K∗0 (700) “Needs Confirmation”. Over the last years, we have been
encouraged by RPP authors and other groups to provide such a confirma-
tion.

Thus, in order to provide the needed confirmation, we are using data
in the elastic region of the S, P,D, F waves together with 16 dispersion
relations. Two of them are the FDRs already used in [3]. However, in order
to reach the κ/K∗0 (700) pole, PWHDR are required. That their applicability
range reaches the pole was shown in [7] but we have slightly modified the
hyperbolae to enlarge the applicability in the real axis while still reaching
the pole. The drawback of using partial-wave dispersion relations is that the
input from ππ → KK̄ is needed. Thus, we consider four PWHDR for the
ππ → KK̄ partial waves. Three are once-subtracted, for angular momentum
and isospin (I, J) = (0, 0), (0, 2), (1, 1), and an additional unsubtracted one
(1, 1). Moreover, we now consider ten more dispersion relations for the S
and P πK partial waves: Four of them come from fixed-t and hyperbolic
once-subtracted dispersion relations for F+ = (F 1/2+2F 3/2)/3, whereas the
other six are two from fixed-t dispersion relations and another four HDR for
F− ≡ (F 1/2 − F 3/2)/3, either unsubtracted or once-subtracted.

As a first step, we showed [8] that unconstrained fits to ππ → KK̄ fail
to satisfy PWHDR, even considering systematic uncertainties. Nevertheless,
we provided constrained fits to ππ → KK̄ Data (CFD), consistent with
PWHDR and still describing data up to 1.47 GeV. Our fits extend up to
2 GeV, but 1.47 GeV is the applicability range of PWHDR in that channel.
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In our latest work [2], we check that, once again, unconstrained fits
to πK data (UFD) fail to satisfy partial-wave dispersion relations, even
considering systematic uncertainties and the CFD ππ → KK̄ input. Thus,
we have imposed the 16 dispersion relations described above to obtain our
final constrained fits to data (CFD). The results for the (1/2,0) partial wave,
where the κ/K∗0 (700) appears, are shown in Fig. 2. The disagreement of the
UFD dispersive output is shown in the left panel. Note the big difference
between the once-subtracted and unsubtracted curves, despite they come
from the same apparently nice-looking UFD shown in Fig. 3. This illustrates
that naive fits to πK data only are not reliable to obtain the κ/K∗0 (700) pole,
since the same input yields the two very inconsistent “UFD” poles shown in
Fig. 1. Only when we use the CFD, whose agreement between all dispersive
representations of the f1/20 wave we show in the right panel of Fig. 2, we
get consistent poles irrespective of using a once-subtracted or unsubtracted
PWHDR. These are shown with solid red and blue symbols in Fig. 1, and
constitute our final result. They are consistent with the pole in [7] obtained
without data on the κ/K∗0 (700) region.
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Fig. 3. Different dispersive outputs for the f 1/2
0 (s) partial wave, versus the in-

put from the data parameterization. Left: Unconstrained Fits to Data (UFD).
Note the huge discrepancies between the curves. Right: Constrained Fits to Data
(CFD). Now all curves agree within uncertainties. We only show the Roy Steiner
results for f 1/2

0 (s) because these are the ones relevant for the κ/K∗
0(700), but the

CFD consistency is very good for the other dispersion relations and partial waves.
Namely, the average χ2/do f per dispersion relation is 0.7, whereas the average
χ2/do f is 1.4 per fitted partial wave.

RPP still considers that the κ/K∗
0(800),“Needs confirmation”. Over the last

years we were encouraged by RPP authors and other groups to provide such
a confirmation of the existence and parameters κ/K∗

0 pole. Our method and
some preliminary results were advanced in the last edition of this conference.
Now we report on our final result presented in [8].

Thus, in order to provide the needed confirmation we are using data in
the elastic region of the S,P,D,F waves and 16 dispersion relations. Two of
them are the FDRs already used in [2]. But in order to reach the κ/K∗

0(700)
pole, partial-wave hyperbolic dispersion relations are needed (PWHDR).
That their applicability range reaches the pole was shown in [5] and we
have slightly modified the hyperbolae to maximixe the applicability in the
real axis while still reaching the pole. The drawback of using HDR is that
a precise ππ → KK̄ input is needed. Thus in [7] we first considered four
PWHDR for the ππ → KK̄ partial waves. Three are once-subtracted, for
angular momentum and isospin (I, J) = (0,0), (0,2), (1,1), and an additional
unsubtracted one (1,1). In addition we now impose ten more dispersion
relations within uncertainties for the S and P πK partial-waves. Four of
them come from fixed-t and hyperbolic once-subtracted dispersion relations
for F+ = (F1/2 + 2F3/2)/3, whereas the other six are two from fixed-t dis-
persion relations and another four HDR for F− ≡ (F1/2 − F3/2)/3, either
non-subtracted or once-subtracted.

As a first step, we showed [7] that unconstrained fits to ππ → KK̄ fail to
satisfy hyperbolic dispersion relations, even though systematic uncertainties
were taken into account. Nevertheless, we provided Constrained Fits to

Fig. 2. (Color online) Dispersive outputs [2] for the f1/20 (s) partial wave versus the
input from the data parameterization. Left: unconstrained fits to data (UFD).
Note the huge discrepancies between the curves. Right: constrained fits to data
(CFD). Now all curves agree within uncertainties. The CFD are also consistent
for the other dispersion relations and partial waves. Namely, the average χ2/d.o.f.
per dispersion relation is 0.7, whereas the average χ2/d.o.f. is 1.4 per fitted partial
wave.

It may be surprising that imposing dispersion relations makes an almost
imperceptible difference between the UFD and CFD for the f1/20 , as we show
in Fig. 3. It is also not the effect of the vector f1/21 partial wave, which barely
changes from our UFD to our CFD. Actually, in [7], their prediction for this
wave was somewhat deviated from the scattering data, as shown in Fig. 3.
The most relevant effect is a consistent description of the ππ → K̄K (1,1)
partial wave, particularly in the unphysical region. Simple models of πK
scattering never pay attention to that contribution.
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K∗
0 (800) to K∗

0 (700). However, this result is not fully
model independent, since the Padé series is truncated
and cuts are mimicked by poles.

Thus, we present here the κ/K∗
0 (700) pole obtained

from a full analysis of the existing data constrained
to satisfy not only Forward Dispersion relations as in
[11], but also both the S and P partial-wave dispersion
relations (Roy-Steiner equations) obtained either from
fixed-t or Hyperbolic Dispersion Relations (HDR). along
(s − a)(u − a) = b hyperbolae, where s, u are the usual
Mandelstam variables. In [34] it was shown that the con-
verge region in the complex plane of the latter in the
a = 0 case reaches the κ/K∗

0 (700) pole.

The price to pay when using partial-wave dispersion re-
lations is that they require input from the crossed channel
ππ → KK̄, whose partial waves are denoted gIℓ and have
the same two problems of being frequently described with
models and the existence of two incompatible sets of data
(see [35] for details). In addition, in this case there is an
“unphysical” region between the ππ and KK̄ thresholds,
where data do not exist, but is needed for the calcula-
tions. Fortunately, Watson’s Theorem tells us that the
phase there is the well-known ππ phase shift, which al-
lows for a full reconstruction of the amplitude using the
standard Mushkelishvili-Omnés method. Thus, in [35]
we rederived the HDR partial-wave projection both for
ππ → KK̄ and πK → πK, but choosing appropriately
the center of the hyperbolas in the s, t plane to maximize
their applicability region. Once again we found that the
existing data do not satisfy well the dispersive representa-
tion, but we were able to provide constrained parameter-
izations of the two existing sets that describe the S-wave
data up to almost 2 GeV and are consistent with HDR
up to 1.47 GeV within uncertainties. These are called
CFDB and CFDC and will be part of our input for the
πK HDR, although we have checked that using one or
the other barely changes the κ/K∗

0 (700) pole position.
Note that, contrary to previous calculations, we also pro-
vide uncertainties for ππ → KK̄. Those for the g11 wave
are very relevant for the κ/K∗

0 (700) pole, particularly in
the unphysical region, where there is no data to compare
and the dispersive output leads to two different solutions
when using one or no subtractions. Thus, We have also
imposed in our CFD that the once and non-subtracted
outputs should be consistent within uncertainties, which
had not been done in previous calculations.

For our purposes in this work, the most relevant par-

tial wave is f
1/2
0 whose UFD is shown in Fig. 2. As

explained in [11] this wave is obtained by fitting the data

measured in the f
1/2
0 + f

3/2
0 /2 and the I = 3/2 com-

binations [54, 55]. It is also relevant that, as shown in
Fig.2, the I = 1/2 vector wave UFD describes well the
scattering data, in contrast to the solution [34]. The rest
of the unconstrained partial-waves and high-energy input
parameterizations are described in [11] for πK and [35]
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FIG. 2. CFD versus UFD phase shifts δIℓ of f
1/2
0 (s) (top) and

f
1/2
1 (s) (bottom).

ππ → KK̄. Minor updates will be detailed in a forth-
coming publication [56].

However, as seen in the upper panel of Fig.3 when
the UFD is used as input of the dispersion relation, the
dispersive representation is not satisfied within uncer-
tainties. Actually, the fixed-t HDR output does not
lie too far from the UFD input, but we can see that
using an unsubtracted or a once-subtracted HDR for
F− ≡ (F 1/2 − F 3/2)/3, their respective dispersive out-
puts come on opposite sides and far from the input UFD
parameterization.

At this point it is very instructive to see how unsta-
ble is the pole parameter extraction from one fit that
looks rather reasonable, as the UFD does. Thus, in Fig.1
we show the position of the κ/K∗

0 (700) pole when calcu-
lated using the HDR without subtractions for F− (hollow
blue) or with one subtraction (hollow red). Note that we
use the same UFD input in the physical regions but the
two poles come incompatible. This is mostly due to the
pseudo-physical region of the g11 partial wave. The ex-
traction would be even more unreliable if a simple model
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Fig. 3. Our [2] CFD versus UFD phase shifts δI` of f1/20 (s) (left) and f
1/2
1 (s)

(right). Data come from [9]. Descotes-Genon et al. is the numerical dispersive
solution of [7].

Thus, we believe we have provided the required confirmation to establish
the existence of the κ/K∗0 (700) resonance, as well as a precise and mathe-
matically sound determination of its parameters.
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