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In this paper, the nonequilibrium correction to the distribution function
containing a time- and space-dependent mass is obtained. Given that, fully
consistent fluid dynamic equations are formulated. Then, the physics of
the bulk viscosity is elaborated for the Boltzmann and Bose–Einstein gases
within the relaxation-time approximation. It is found that the parametric
form of the ratio ζ/τR for the quantum gas is affected by the infrared cut-
off. This may be an indication that the relaxation-time approximation is
too crude to obtain a reliable form of bulk viscosity.

DOI:10.5506/APhysPolBSupp.14.169

1. Introduction

Relativistic viscous hydrodynamics is a very efficient framework to in-
vestigate and understand the physics of strongly interacting matter created
experimentally in heavy-ion collisions [1, 2]. Apart from the conservation
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laws and constraints on local thermal equilibrium, a viscous hydrodynami-
cal description requires transport coefficients determined by the microscopic
structure of a given system. Given that, different phenomena control para-
metric forms of different coefficients. In weakly interacting systems, the
shear viscosity is mostly determined by kinetic energy scale, while bulk vis-
cosity appears as a consequence of the conformal anomaly [3–5]. Due to the
complexity of the symmetry breaking and importance of different energy
scales, the bulk sector is still much less understood than the shear transport
phenomena. In particular, it is important for modelling of heavy-ion col-
lisions to have a fluid dynamics formulation where temperature-dependent
mass is properly included in the bulk sector. This is very challenging in
general but doable to some extent in the regime of the coupling constant,
where analytic methods can be employed.

In this paper, we consider a dilute gas of weakly interacting particles of
single species with the Bose–Einstein or Boltzmann statistics where effective
kinetic theory is applicable and the mean-field effects can be systematically
examined. Within the kinetic theory, many attempts were undertaken so
far to provide such a description, see Refs. [6–13] but it seems they were
incomplete. Hence we revisited the problem. The entire comprehensive
examination of the consequences of the temperature-dependent mass on dy-
namics of the system is presented in our paper [14]. Here we only provide a
very concise summary of the main results.

2. Nonequilibrium deviation from the equilibrium
distribution function

The quasiparticle dynamics of a system of a single species is governed
by the Boltzmann equation. When the x-dependence of the quasiparticle
energy is known, the equation can be written as follows:(

k̃µ∂µ − 1
2∇m̃

2
x · ∇k

)
f = C[f ] , (1)

where C[f ] is the collision term and f = f(x, k) is a distribution function
of quasiparticles. k̃µ = (k̃0,k) is the quasiparticle four-momentum, where

k̃0 ≡ Ek is the nonequilibrium energy Ek =
√
k2 + m̃2

x. A time and space
dependence appears in the mass definition m̃2

x ≡ m̃2(x) = m2
0 + m2

th(x),
where m0 is the constant mass and mth(x) is the nonequilibrium thermal
mass, which varies in time and space. Note that we use tilde and calligraphic
letters to denote nonequilibrium quantities. For a system in equilibrium, we
ommit tilde and use standard letters so that the four-momentum, energy
and mass of quasiparticles are denoted by kµ, Ek and mx, respectively. The
thermal mass of quasiparticles in equilibrium is denoted by meq and the
equilibrium phase-space density by f0.
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The phase-space density function f(x, k) is the main object of the kinetic
theory which carries information on the behavior of quasiparticles. When
the departure from the equilibrium state is weak, the equilibration process
is controlled by the small deviation in the distribution function

∆f(x, k) = f(x, k)− f0(x, k) = δf(x, k) + δfth(x, k) , (2)

where f0(x, k) is the equilibrium Bose–Einstein distribution function f0(x, k)
= 1/(exp

(
Ek(x)β(x)

)
− 1), where β(x) = 1/T (x) with T being the temper-

ature of the system. As can be seen, ∆f has two parts: δf occurs because
of hydrodynamic forces, which, in turn, changes the functional form of f0,
and δfth = fth − f0, which is the effect of a small thermal mass deviation
∆m2

th = m2
th −m2

eq. The function fth has the local-equilibrium form of the
Bose–Einstein distribution function

fth(x, k) ≡ f0(x, k)|m2
0+m2

eq(x)→m2
0+m2

eq(x)+∆m2
th(x)

and by expanding it, one finds the correction δfth expressed through ∆m2
th.

Since ∆m2
th is the nonequilibrium small deviation, which itself is a functional

of ∆f , the problem must be solved self-consistently. As a result, one gets

∆f = δf − T 2
dm2

eq

dT 2

f0(1 + f0)

Ek

∫
dKδf∫

dKEkf0(1 + f0)
, (3)

where dK = d3k/[(2π)3Ek]. In previous analyses [6–13], the second term in
Eq. (3) was missing or was incomplete. The thermal mass of the quantum
gas is given by m2

eq = λT 2/24, where λ is the coupling constant assumed
to be small. The temperature dependence of the thermal mass is found to
be T 2 dm2

eq
dT 2 = m2

eq + T 2βλ/48, where βλ ≡ T dλ
dT is the renormalization group

βλ-function which controls the running of the coupling constant as a function
of the energy scale. βλ should be calculated via diagrammatic methods and
in the case of the scalar theory, it is positive and proportional to λ2.

3. Equations of hydrodynamics with thermal corrections

The stress-energy tensor of nonequilibrium fluid dynamics takes the fol-
lowing form:

Tµν =

∫
dKk̃µk̃νf − gµνU , (4)

where gµν = diag(1,−1,−1,−1), U is the mean-field contribution and dK ≡
d3k/[(2π)3Ek] is the Lorentz-invariant measure. First, let us point out that
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when the system is in equilibrium, the stress-energy tensor has the same form
as Eq. (4) but all quantities are replaced by their equilibrium counterparts
so that k̃µ → kµ, Ek → Ek, f → f0, and U → U0.

It is essential to underline that the fluid dynamics equations with thermal
effects discussed here are valid as long as all assumptions about quasipar-
ticles of kinetic theory hold. Then, the departure of all quantities from its
equilibrium forms is determined by small corrections. In particular, one has
f = f0 + ∆f , where ∆f is given by Eq. (3), and U = U0 + ∆U . The equilib-
rium mean-field contribution should satisfy dU0 = 1

2dm2
eq

∫
dKf0, and the

nonequilibrium correction is ∆U = 1
2∆m2

th
∫

dKf0 to guarantee the energy-
momentum conservation law ∂µT

µν = 0. Consequently, the stress-energy
tensor (4) may be decomposed into the local equilibrium part Tµν0 and the
nonequilibrium correction ∆Tµν as follows:

Tµν = Tµν0 + ∆Tµν . (5)

The equilibrium energy-momentum tensor has the familiar form of Tµν0 =
ε0u

µuν − P0∆µν , where uµ is the four-velocity and ∆µν = gµν − uµuν . ε0 is
the energy density and P0 is the local thermodynamic pressure, which are
defined as

ε0 =

∫
dKE2

kf0 − U0 , P0 =
1

3

∫
dK k2f0 + U0 . (6)

The presence of the mean-field contribution in Eq. (6) does not change the
enthalpy, h0 = ε0 +P0. One can also check that the thermodynamic relation
Ts0 = TdP0/dT = ε0 + P0, where s0 is the entropy density, is fulfilled.

∆Tµν , which depends on ∆f and ∆U , carries entire dynamical infor-
mation needed to determine how the nonequilibrium system evolves into its
equilibrium state. The Landau matching is defined by the eigenvalue prob-
lem, which in the fluid rest frame can be expressed by the conditions on
the energy and the momentum densities T 00 = ε and T 0i = 0, respectively.
Given that, one defines the local equilibrium as the state having the same
local energy and the momentum density, which is the essence of the Landau
matching conditions found as

∆T 00 =

∫
dK

[
E2
k − T 2

dm2
eq

dT 2

]
δf = 0 , ∆T 0i =

∫
dKEkk

i∆f = 0 . (7)

∆T ij can be manipulated and reorganized in such a way to separate the spin
0 part and the spin 2 part, ∆T ij = πij + δijΠ, where the shear-stress tensor
πij and the bulk pressure Π have commonly known forms

πij =

∫
dK

(
kikj − 1

3
δijk2

)
δf , Π =

1

3

∫
dKk2δf . (8)
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4. Transport coefficients in the Anderson–Witting model

In the Anderson–Witting model, the Boltzmann equation with the
x-dependent thermal mass is given by(

kµ∂µ −
1

2
∂im

2
eq

∂

∂ki

)
f0(x, k) = −Ek

τR
∆f(x, k) , (9)

where kµ = (Ek,k) and τR is the relaxation time which is assumed to be
energy-independent. ∆f is the nonequilibrium correction given by Eq. (3)
and we let δf = f0(1 + f0)φ, where φ = φs + φb, that is, it consists of the
shear and bulk part. Solving the Anderson–Witting model, one finds their
forms to be

φs(k) = − τR

TEk

(
kikj − 1

3
δijk2

)
∂jui , (10)

φb(k) = τRβ
(
∂iu

i
)(

c2
s −

1

3

)(
Ek −

1

Ek

J3,0 − T 2
(
dm2

eq/dT
2
)
J1,0

J1,0 − T 2(dm2
eq/dT

2)J−1,0

)
, (11)

where c2
s is the speed of sound and the factor c2

s−1/3 depending both on the
mass m2

0 and βλ fixes the nonconformality parameter. The thermodynamic
functions Jn,q are defined as follows: Jn,q = 1/(2q + 1)!!

∫
dK(u · k)n−2q

(−∆µνk
µkν)q f0(k)(1 + f0(k)). One can check that with these forms of

solution the energy of the system is conserved and the Landau matching
conditions are satisfied. Having given solutions (10) and (11), one can use
Eq. (8) to find shear-stress tensor and bulk pressure. Next, by comparing
them with πij = 2ησij , where σij = −1/2(∂iuj + ∂jui − 2/3gij∂ku

k) and
Π = −ζ∂iui, the ratios η/τR and ζ/τR can be extracted. Therefore, from
the shear part, one finds the known form of the ratio η/τR = (ε0 + P0)/5
and from the bulk part, one gets

ζ

τR
≈ T 4

(
1

3
− c2

s

)2
(

2π3T

25mx
− 4π2

75

(
1−

9m2
eq

8m2
x

))
, (12)

wheremx=
√
m2

0 +m2
eq(x). The ratio for the Boltzmann statistics f0,c(k) =

e−βEk can be found analogously, and it is

ζBoltz

τR
≈ T 4

(
1

3
− c2

s

)2(60

π2
− 36mx

πT

)
. (13)

Note that the structure of expression (12) is slightly different from the
one in (13) due to the factor T/mx. The origin of this difference comes
from the fact that the infrared limit of the Bose–Einstein factor behaves like
f0(k) ∼ T/Ek, while the Boltzmann factor does not show such a behavior.
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5. Conclusions

In this paper, we examined the effects of mean field on fluid dynamics.
We found the correction to the distribution function which enabled us to
formulate fully consistent equations of fluid dynamics as well as to solve
the Anderson–Witting model to compute ζ/τR of the Bose–Einstein and
Boltzmann gases. The ratio ζ/τR for the Boltzmann gas has a parametrically
expected form, that is, it is given by the nonconformality parameter squared.
In the case of the Bose–Einstein gas, the leading order term of ζ/τR has an
additional energy scale-dependent factor T/mx. We suspect that it is an
indication that the relaxation-time approximation applied here is too crude
to get the expected form of the ratio since the constant relaxation time is
insensitive to the soft scale.

This work is supported in part by the National Science Centre (NCN),
Poland, under grant 2018/29/B/ST2/00646 and by the Natural Sciences and
Engineering Research Council of Canada.
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