GAUGE-COVARIANT DIAGONALIZATION OF πa_{1} MIXING AND THE RESOLUTION OF A LOW-ENERGY THEOREM***

A.A. Osipov
Bogoliubov Laboratory of Theoretical Physics
Joint Institute for Nuclear Research, Dubna 141980, Russia
M.M. Khalifa
Moscow Institute of Physics and Technology
Dolgoprudny, Moscow Region 141701, Russia
and
Department of Physics, Al-Azhar University, Cairo 11751, Egypt
B. Hiller
CFisUC, Department of Physics, University of Coimbra
3004-516 Coimbra, Portugal

(Received June 23, 2020)

Using a recently proposed gauge covariant diagonalization of πa_{1}-mixing, we show that the low-energy theorem $F^{\pi}=e f_{\pi}^{2} F^{3 \pi}$ of current algebra, relating the anomalous form factor $F_{\gamma \rightarrow \pi^{+} \pi^{0} \pi^{-}}=F^{3 \pi}$ and the anomalous neutral pion form factor $F_{\pi^{0} \rightarrow \gamma \gamma}=F^{\pi}$, is fulfilled in the framework of the Nambu-Jona-Lasinio (NJL) model, solving a long-standing problem encountered in the extension including vector and axial-vector mesons. At the heart of the solution is the presence of a $\gamma \pi \bar{q} q$ vertex which is absent in the conventional treatment of diagonalization and leads to a deviation from the vector meson dominance (VMD) picture. It contributes to a gauge-invariant anomalous tri-axial (AAA) vertex as a pure surface term.

DOI:10.5506/APhysPolBSupp.14.187

[^0]The Wess-Zumino [1] effective action, with topological content clarified by Witten [2], describes all effects of QCD anomalies in low-energy processes with photons and Goldstone bosons, without reference to massive vector mesons. The extension to the case with spin-1 mesons is not unique, and has been addressed in different frameworks [3-5]. Important issues arise when one includes the spin-1 states. Here, we address the concept of VMD and the pseudoscalar-axial-vector mixing (πa_{1} mixing) of meson states. In particular, it has been shown in [4] that the complete VMD is not valid in either $\pi^{0} \rightarrow \gamma \gamma$ or $\gamma \rightarrow 3 \pi$ processes, and that mixing affects hadronic amplitudes in $[6,7]$. Therefore, one should demonstrate how the departure from VMD occurs and how πa_{1} mixing is treated in order to comply with the predictions of the Wess-Zumino action. This is not a trivial task, in [8], it has been reported that in a number of well-known models [9-16], the πa_{1} mixing breaks low-energy theorems (LET) for some anomalous processes, e.g., $\gamma \rightarrow 3 \pi, K^{+} K^{-} \rightarrow 3 \pi$. In [17], based on the gauge covariant treatment of πa_{1} mixing, only recently addressed [18-22], we show precisely how the deviation of the complete VMD occurs in the framework of the NJL Lagrangian, fulfilling the LET

$$
\begin{equation*}
F^{\pi}=e f_{\pi}^{2} F^{3 \pi} \tag{1}
\end{equation*}
$$

The procedure is sufficiently general to be applied in other processes.
To be more definite, recall that the πa_{1} diagonalization is generally performed by a linearized transformation of the axial vector field

$$
\begin{equation*}
a_{\mu} \rightarrow a_{\mu}+\frac{\partial_{\mu} \pi}{a g_{\rho} f_{\pi}} \tag{2}
\end{equation*}
$$

where $\pi=\tau_{i} \pi^{i}, a_{\mu}=\tau_{i} a_{\mu}^{i}$ and τ_{i} are the $\mathrm{SU}(2)$ Pauli matrices; $g_{\rho} \simeq$ $\sqrt{12 \pi}$ is the coupling of the ρ meson to two pions, and $f_{\pi} \simeq 93 \mathrm{MeV}$ is the pion weak decay constant. In extensions of the model that couple to the electroweak sector, this replacement violates gauge invariance [18-22] in anomalous processes, leaving, however, the real part of the action invariant [20, 21]. For example, the anomalous low-energy amplitude describing the $a_{1} \rightarrow \gamma \pi^{+} \pi^{-}$decay is not transverse [18, 19]. To restore gauge invariance, the gauge covariant derivative $\mathcal{D}_{\mu} \pi$ must be used instead of $\partial_{\mu} \pi[18-22]$

$$
\begin{equation*}
a_{\mu} \rightarrow a_{\mu}+\frac{\mathcal{D}_{\mu} \pi}{a g_{\rho} f_{\pi}}, \quad \mathcal{D}_{\mu} \pi=\partial_{\mu} \pi-i e A_{\mu}[Q, \pi], \quad Q=\frac{1}{2}\left(\tau_{3}+\frac{1}{3}\right) \tag{3}
\end{equation*}
$$

In the context of the LET, $F^{\pi}=e f_{\pi}^{2} F^{3 \pi}$ mixing occurs related to both anomalous form factors, but it has been proven in [17] that the radiative decay $\pi^{0} \rightarrow \gamma \gamma$ is not affected by the mixing, and coincides with the lowenergy result of current algebra given by the Lagrangian density [1, 2]

$$
\begin{equation*}
\mathcal{L}_{\pi \gamma \gamma}=-\frac{1}{8} F^{\pi} \pi^{0} e^{\mu \nu \alpha \beta} F_{\mu \nu} F_{\alpha \beta}, \quad F^{\pi}=\frac{N_{\mathrm{c}} e^{2}}{12 \pi^{2} f_{\pi}} \tag{4}
\end{equation*}
$$

where e is the electric charge, $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ stands for the strength of the electromagnetic field, N_{c} is the number of quark colors. The absence of mixing is seen as follows. In the NJL model, one can switch to spin-1 variables without direct photon-quark coupling, as described in the VMD picture. Then $\mathcal{L}_{\pi \gamma \gamma}$ is related to the $\pi^{0} \omega \rho$ quark triangle shown in Fig. 1 (a). At leading order of a derivative expansion, the current-algebra result $\Gamma\left(\pi^{0} \rightarrow\right.$ $\gamma \gamma)=7.1 \mathrm{eV}$ is obtained. Diagram $1(\mathrm{~b})$, due to mixing, is described by an axial-vector vector vector (AVV) Adler-Bell-Jackiw anomaly [23-26]. The related surface term (ST) which results from the difference of two linearly divergent amplitudes is a priori arbitrary. Here, this arbitrary parameter is fixed on gauge-invariant grounds of $a_{1} \rightarrow \gamma \gamma$, upon which graph 1 (b) vanishes at leading order of a derivative expansion. This complies with the Landau-Yang theorem [27, 28] which states that a massive unit spin particle cannot decay into two on-shell massless photons.
(a)

(c)

(b)

(e)

Fig. 1. (a) and (b): the two graphs describing the $\pi^{0} \rightarrow \gamma \gamma$ decay in the NJL model, (b) for πa_{1}-mixing effects on the pion line. Quark loop contributions to $\omega \rightarrow 3 \pi$ decay, (c) full set of possible diagrams without and with 1,2 , and $3 \pi a_{1}$-mixing effects on the pion line (not drawn); (d) ρ exchange diagrams without and with πa_{1} transitions. (e) contribution to $\gamma \rightarrow 3 \pi$ decay due to covariant πa_{1} diagonalization, see (3), with pion lines subject to πa_{1} mixing.

Effects of πa_{1} mixing in $\gamma \rightarrow 3 \pi$ amplitudes (due to G-parity, it is sufficient to consider the isoscalar component of the photon related to $\omega \rightarrow$ 3π) have been studied in detail by Wakamatsu [8], using prescription (2). He found that the amplitude of the $\omega \rightarrow 3 \pi$ decay contains uncompensated contributions generated by πa_{1} mixing, breaking the LET at the order of $1 / a^{2}$, where $a=\frac{m_{\rho}^{2}}{g_{\rho}^{2} f_{\pi}^{2}}=1.84$ and m_{ρ} is the empirical mass of the ρ-meson. This conclusion is based on the assumption that VMD is valid.

Let us recall and complement the calculations made in [8]. The diagrams contributing to the $\omega \rightarrow 3 \pi$ decay are shown in Fig. 1 (c), (d), where we have additionally taken into account the box diagram with three πa_{1} transitions in (c) as well as the contribution of the $\omega \rho\left(a_{1} \rightarrow \pi\right)$ vertex in the ρ-exchange graph (d), both neglected in [8]. The corresponding amplitude is given by

$$
\begin{equation*}
A_{\omega \rightarrow 3 \pi}=-\frac{N_{\mathrm{c}} g_{\rho}}{4 \pi^{2} f_{\pi}^{3}} e_{\mu \nu \alpha \beta} \epsilon^{\mu}(q) p_{0}^{\nu} p_{+}^{\alpha} p_{-}^{\beta} F_{\omega \rightarrow 3 \pi} \tag{5}
\end{equation*}
$$

where p_{0}, p_{+}, p_{-}are the momenta of the pions, $\epsilon^{\mu}(q)$ the polarization of the ω-meson with momentum q, and the form factor $F_{\omega \rightarrow 3 \pi}$ is found to be

$$
\begin{equation*}
F_{\omega \rightarrow 3 \pi}=\left(1-\frac{3}{a}+\frac{3}{2 a^{2}}+\frac{1}{8 a^{3}}\right)+\left(1-\frac{c}{2 a}\right) \sum_{k=0,+,-} \frac{g_{\rho}^{2} f_{\pi}^{2}}{m_{\rho}^{2}-\left(q-p_{k}\right)^{2}} \tag{6}
\end{equation*}
$$

In the first parentheses, the box diagrams without, with one, two, and three πa_{1} transitions are given correspondingly. The last term represents the contribution of ρ-exchange graphs, where c controls the magnitude of an arbitrary local part of the anomalous AVV-quark-triangle. In the low-energy limit, the sum yields $3 / a$, as one neglects the dependence on momenta in (6), leading to full cancellation among the terms of the order of $1 / a$, as is well known [8]. The ST c contributes at the order of $1 / a^{2}$. For $c=0$, we reproduce the πa_{1}-mixing effect found in [8] to this order. Had c been used instead to cancel the πa_{1}-mixing effect, as $c=1+1 /(12 a)$, a too low width $\Gamma\left(\omega \rightarrow \pi^{+} \pi^{0} \pi^{-}\right)=3.2 \mathrm{MeV}$ would have been obtained as compared to experiment $\Gamma\left(\omega \rightarrow \pi^{+} \pi^{0} \pi^{-}\right)=7.57 \pm 0.13 \mathrm{MeV}$. Furthermore, the value $c=0$ is also required following [29], where the chiral Ward identities (WI) for $\gamma \rightarrow 3 \pi$ imply that both the chiral triangle and the box anomaly contribute as

$$
\begin{equation*}
A_{\gamma \rightarrow 3 \pi}^{\mathrm{tot}}=\frac{3}{2} A^{\mathrm{AVV}}-\frac{1}{2} A^{\mathrm{VAAA}} \tag{7}
\end{equation*}
$$

where $A_{\gamma \rightarrow 3 \pi}^{\mathrm{tot}}, A^{\mathrm{AVV}}$ and A^{VAAA} are, respectively, the total $\gamma \pi \pi \pi$ amplitude, the $\gamma \rightarrow \omega \rightarrow \pi \rho \rightarrow \pi \pi \pi$ process and the point $\gamma \rightarrow \omega \rightarrow \pi \pi \pi$ amplitude. This result is consistent with both the chiral WI and with the KSFR relation $[30,31]$, which arises in the NJL model at $a=2$. One sees from Eq. (6) that, if one neglects the terms of the order of $1 / a^{2}$ and higher in the box contribution and puts $c=0$ in the ρ-exchange term, the amplitude A^{VAAA} has a factor $(1-3 / a)=-1 / 2$, and the A^{AVV} amplitude has a factor $(1-c /(2 a)) 3 / a=3 / 2$, as is required by the chiral WI. On the other hand, if c is chosen to cancel πa_{1}-mixing effects, these amplitudes contribute with relative weights $-7 / 64$ and $71 / 64$, respectively. Therefore, the ST c cannot be used to resolve the πa_{1}-mixing puzzle, the chiral WI require $c=0$. This
pattern has been considered in $[3,5,8]$, and reproduces well the phenomenological value of the width. That allows us to conclude, following [8], that if the VMD is a valid theoretical hypothesis, the $\gamma \rightarrow \omega \rightarrow 3 \pi$ amplitude contains contributions due to πa_{1} mixing that violate the LET (1)

$$
\begin{align*}
A_{\gamma \rightarrow 3 \pi} & =-F^{3 \pi} e_{\mu \nu \alpha \beta} \epsilon^{\mu}(q) p_{0}^{\nu} p_{+}^{\alpha} p_{-}^{\beta} \tag{8}\\
F^{3 \pi} & =\frac{N_{\mathrm{c}} e}{12 \pi^{2} f_{\pi}^{3}}\left(1+\frac{3}{2 a^{2}}+\frac{1}{8 a^{3}}\right) \neq \frac{N_{\mathrm{c}} e}{12 \pi^{2} f_{\pi}^{3}} \tag{9}
\end{align*}
$$

In the following, we will show that it is possible to combine the phenomenologically successful value $c=0$ with a full cancellation of πa_{1}-mixing effects within the NJL approach by taking into account the anomalous AAA triangle shown in Fig. 1 (e), which occurs as result of (3)

$$
\begin{align*}
A= & \frac{N_{\mathrm{c}} e}{4 a^{3} f_{\pi}^{3}}\left\{p_{-}^{\sigma}\left[J_{\mu \nu \sigma}\left(p_{0}, p_{-}\right)-J_{\mu \sigma \nu}\left(p_{-}, p_{0}\right)\right]\right. \\
& \left.+p_{+}^{\sigma}\left[J_{\mu \nu \sigma}\left(p_{0}, p_{+}\right)-J_{\mu \sigma \nu}\left(p_{+}, p_{0}\right)\right]\right\} \epsilon^{\mu}(q) p_{0}^{\nu} \tag{10}
\end{align*}
$$

The low-energy expansion of the loop integral $J_{\mu \nu \sigma}$ starts from a linear term

$$
\begin{equation*}
J_{\mu \nu \sigma}\left(p_{0}, p_{-}\right)=\frac{1}{24 \pi^{2}} e_{\mu \nu \sigma \rho}\left(p_{0}-p_{-}-3 v\right)^{\rho}+\ldots \tag{11}
\end{equation*}
$$

Owing to the shift ambiguity related to the formal linear divergence of this integral, the result depends on the undetermined 4 -vector v_{ρ}

$$
\begin{equation*}
A=-\frac{N_{\mathrm{c}} e}{4 \pi^{2} f_{\pi}^{3}} e_{\mu \nu \sigma \rho} \epsilon^{\mu}(q) p_{0}^{\nu}\left(p_{+}+p_{-}\right)^{\sigma}\left(\frac{v^{\rho}}{4 a^{3}}\right) \tag{12}
\end{equation*}
$$

This is the complete result for this triangle diagram. The 4 -vector v_{ρ} is represented as a linear combination of the independent momenta of the process, $v_{\mu}=b_{1} q_{\mu}+b_{2}\left(p_{+}-p_{-}\right)_{\mu}+b_{3}\left(p_{+}+p_{-}\right)_{\mu}$, but only the second term survives in (12). Thus, the graph shown in Fig. 1 (d) gives an additional contribution $\Delta F^{3 \pi}$ to the form factor $F^{3 \pi}$

$$
\begin{equation*}
\Delta F^{3 \pi}=\frac{N_{\mathrm{c}} e}{12 \pi^{2} f_{\pi}^{3}}\left(\frac{-3 b_{2}}{2 a^{3}}\right) \tag{13}
\end{equation*}
$$

where b_{2} is dimensionless and as yet undetermined. This constitutes a further example in which an arbitrary-regularization-dependent parameter should be fixed by the physical requirements $[26,32,33]$. The AAA amplitude would have been zero had it been regularized in advance by any regularization that sets ST to zero. For a detailed discussion of this and further anomalous vertices appearing in the present calculation, we refer
to [17]. To fix b_{2}, we use the LET (1); requiring that the unwanted terms in (9) vanish, we find that $b_{2}=a+\frac{1}{12}=1.92$. Thus, the solution of the πa_{1}-mixing problem in the $\gamma \rightarrow 3 \pi$ amplitude can be associated with the ST of the anomalous non-VMD diagram shown on the right of Fig. 1.

REFERENCES

[1] J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971).
[2] E. Witten, Nucl. Phys. B 223, 422 (1983).
[3] Ö. Kaymakcalan, S. Rajeev, J. Schechter, Phys. Rev. D 30, 594 (1984).
[4] T. Fujiwara et al., Prog. Theor. Phys. 73, 926 (1985).
[5] N. Kaiser, U.-G. Meißner, Nucl. Phys. A 519, 671 (1990).
[6] S. Gasiorovicz, D.A. Geffen, Rev. Mod. Phys. 41, 531 (1969).
[7] M.K. Volkov, A.A. Osipov, Preprint JINR R2-85-390, JINR, Dubna, 1985.
[8] M. Wakamatsu, Ann. Phys. 193, 287 (1989).
[9] J. Schwinger, Phys. Lett. B 24, 473 (1967).
[10] J. Wess, B. Zumino, Phys. Rev. 163, 1727 (1967).
[11] J.J. Sakurai, «Currents and Mesons», Univ. of Chicago Press, Chicago 1969.
[12] D. Ebert, M.K. Volkov, Z. Phys. C 16, 205 (1983).
[13] M.K. Volkov, Ann. Phys. 157, 282 (1984).
[14] D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986).
[15] M. Bando et al., Phys. Rev. Lett. 54, 1215 (1985).
[16] M. Bando, T. Kugo, K. Yamawaki, Nucl. Phys. B 259, 493 (1985).
[17] A.A. Osipov, M.M. Khalifa, B. Hiller, Phys. Rev. D 101, 034012 (2020).
[18] A.A. Osipov, JETP Lett. 108, 161 (2018).
[19] A.A. Osipov, M.M. Khalifa, Phys. Rev. D 98, 036023 (2018).
[20] A.A. Osipov, B. Hiller, P.M. Zhang, Phys. Rev. D 98, 113007 (2018).
[21] A.A. Osipov, B. Hiller, P.M. Zhang, Mod. Phys. Lett. A 34, 1950301 (2019).
[22] A.A. Osipov, A.A. Pivovarov, M.K. Volkov, M.M. Khalifa, Phys. Rev. D 101, 094031 (2020), arXiv:2003. 03630 [hep-ph].
[23] S. Adler, B.W. Lee, S.B. Treiman, A. Zee, Phys. Rev. D 4, 3497 (1971).
[24] J.S. Bell, R.W. Jackiw, Nuovo Cim. A 60, 47 (1969).
[25] S.B. Treiman, R.W. Jackiw, D.J. Gross, «Lectures on Current Algebra and Its Applications. Princeton Series in Physics», Princeton University Press, Princeton, New Jersey 1972.
[26] R. Jackiw, Int. J. Mod. Phys. B 14, 2011 (2000).
[27] L.D. Landau, Dokl. Akad. Nauk SSSR 60, 207 (1948).
[28] C.N. Yang, Phys. Rev. 77, 242 (1950).
[29] T.D. Cohen, Phys. Lett. B 233, 467 (1989).
[30] K. Kawarabayashi, M. Suzuki, Phys. Rev. Lett. 16, 255 (1966).
[31] Riazuddin, Fayyazuddin, Phys. Rev. 147, 1071 (1966).
[32] A.P. Baeta Scarpelli, M. Sampaio, B. Hiller, M.C. Nemes, Phys. Rev. D 64, 046013 (2001).
[33] Y.R. Batista, B. Hiller, A. Cherchiglia, M. Sampaio, Phys. Rev. D 98, 025018 (2018).

[^0]: * Presented by B. Hiller at Excited QCD 2020, Krynica Zdrój, Poland, February 2-8, 2020.
 ** The authors acknowledge support from CFisUC and FCT through the project UID/FIS/04564/2020 and grant CERN/FIS-COM/0035/2019, and the networking support by the COST Action CA16201.

