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We analyze Sakumichi and Suganuma lattice QCD results for the
3-quark potential, using hyperspherical three-body coordinates. We show
that their data supports neither the Delta, nor the Y-string interpretation,
but something in-between. We show that the shape dependence of Saku-
michi and Suganuma three-quark potential evaluated at β = 5.8 differs
from the one evaluated at β = 6.0 by about 2%.
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1. Introduction

In spite of decades-long efforts [1–4], the functional form of the three-
heavy-quark potential in lattice QCD is still not well known. Unlike the
confining part of the two-body potential, which depends only on one variable
— the distance between two bodies (quark and antiquark) — the three-body
potential depends on three (scalar) variables.

Perhaps the simplest set of three-body variables that distinguishes per-
mutation symmetric configurations are the hyperspherical coordinates, see
[5, 6] and references therein, which consist of a (dimensional) hyperradius
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R =
√

1
3

∑3
i<j(ri − rj)2, which is proportional to the root-mean-square dis-

tance of the three particles from their geometrical barycenter Rgb = 1
3

∑3
i ri

(which equals the physical center-of-massRgb = RCM when all three masses
are equal), and scales linearly with λ: R → λR, and thus measures the
size of the system; and of two dimensionless (shape) variables, that may
be expressed as hyperangles, or some functions thereof. The hyperangles
φ = arctan

(
2ρ·λ

ρ2−λ2

)
and α = arccos

(
2(ρ×λ)
ρ2+λ2

)
, defined in Ref. [6], are used

here because they make the permutation symmetry manifest. The scaling
transformation affects only the hyperradius, whereas the permutation sym-
metry affects only the two “shape space” variables/hyperangles.

2. Analysis of lattice data

In earlier publications [5, 6], we have analysed Koma and Koma and
Takahashi et al. lattice results [2, 3] in terms of three hyperspherical coordi-
nates. Whereas the old Takahashi et al. [3] data were insufficient to produce
a continuous functional shape-space dependence, Koma and Koma [2] results
yielded two smooth functions along two orthogonal lines in the shape space.

There are several important differences between Komas and Koma and
Sakumichi calculations: [2] had a 244 lattice at β = 6.0 (lattice spacing
a = 0.093 fm), with 221 three-quark geometries and only one gauge configu-
ration; [1] had a 163×32 lattice at β = 5.8 (lattice spacing a = 0.148(2) fm)
with 101 three-quark geometries, and a 203 × 32 lattice at β = 6.0 (lattice
spacing a = 0.1022(5) fm) and 211 three-quark geometries, with 1000 and
2000 gauge configurations, respectively.

Figure 1 depicts all configurations of the three-body system in Ref. [1]
including their permutations. The three lines that cross the origin represent
isosceles triangles. Three lines orthogonal to them represent the right-angled
triangles — one such line is at y = −0.5. One can see here that these lines
are the only two sets of geometric configurations that are common to both
the Koma and Suganuma data. We shall, therefore, use them both.

We assume that the total three-quark potential V3q has the form of

V3q(α, φ,R) = −A(α, φ)

R
+B(α, φ)R+ C , (1)

henceforth referred to as the Coulomb + linear potential Ansatz. The first
term represents the sum of QCD Coulomb pairwise interactions, which is
dominant at small values of the hyperradius R. The second term represents
the confinement potential, which is linear in R and dominant at large values
of hyperradius R, and the third term — C — is a constant. Here, A(φ, α) is
assumed to be the (standard) sum of pair-wise Coulomb terms, and B(φ, α)
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is the unknown hyperangular dependence of the linearly rising confining
potential. Our goal is to determine B(φ, α) ' V/R using the lattice data
and the well-known hyperangular and hyperradial dependences of the two-
body Coulomb term, as explained in Refs. [5, 6].

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

Sakumichi beta=5.8 (441 configurations)

10

20

30

40

50

60

70

80

R
 s
qu

ar
ed

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

Sakumichi beta=6.0 (971 configurations)

20

40

60

80

100

120

140

160

R
 s
qu

ar
ed

Fig. 1. Distribution of Sakumichi and Suganuma 3q configurations at β = 5.8

(l.h.s.) and β = 6.0 (r.h.s.).

We used the fixed equilateral triangle geometry with multiple sizes to fit
the three free couplings A, B, C, see Table I.

TABLE I

Our and Sakumichi and Suganuma (taken from Table II in [1]) fitted constants in
the 3-quark potential for equilateral triangles: the Coulomb coefficient A = 3A3q,
the string tension B, and the constant C = C3q. Note the substantial difference of
error bars.

β Afit Bfit Cfit ASak BSak CSak

5.8 0.381(77) 0.166(6) 0.951(53) 0.357(9) 0.168(2) 0.93(1)
6.0 0.297(42) 0.088(2) 0.884(26) 0.363(9) 0.081(2) 0.936(9)

From Table I we can take the average values and the conservative error
bars: A = 0.369(77), B = 0.167(6), C = 0.94(5) at β = 5.8, and A =
0.330(42), B = 0.085(2), C = 0.91(3) at β = 6.0. Note that the error bars
of the Coulomb (A) and the constant term (C) are much larger (ranging
from 21% for A, and 5% for C, to only 2.4% for B) than those for string
tension B. We shall vary these constants, within their respective error bars,
in our analysis so as to determine the dependence of the extracted shape
dependences.
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Case β = 5.8
It can be seen in Fig. 2 (a) that for the isosceles triangle configurations

in the [1] β = 5.8 data set, all of the B(x) values form a scattered set
of points, some of which, though not all, lie between the ∆ and Y-string
potentials’ functional forms. As one imposes the hyperradial filter R ≥
8.0, the scatter reduces, as does the number of points, Fig. 2 (b), but no
single, smooth curve emerges. The corresponding graphs for the right-angled
triangles are shown in Fig. 3. Note that most of the points fall between the
(upper, black/blue) ∆-string prediction and the (lower, gray/red) Y-string,
the only discrepancies being the multiple points near the isosceles right-
angled configuration.
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Fig. 2. (Color online) Extracted values of Sakumichi and Suganuma V/R for isosce-
les triangles (y = 0), at β = 5.8: (a) all (l.h.s); (b) with hyperradius filter
R ≥ 8.0 (r.h.s). The black/blue line represents the ∆-string, the gray/red line
is the Y-string.

Fig. 3. (Color online) Extracted values of V/R for: (a) all right triangles (x = 0.5)
(l.h.s.); (b) right triangles (x = 0.5) with hyperradius filter R ≥ 7.0, at β = 5.8,
(r.h.s.). The black/blue line represents the ∆-string, gray/red line is the Y-string.
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Case β = 6.0
Similarly: (a) (again) the hyperradial filter R ≥ 8.0 eliminates many

widely scattered low-R points in Fig. 4, and many of the remaining points
fall onto the (lower, gray/red) Y-string prediction in Fig. 5; (b) the resulting
y dependence of V (y)/R for right-angled triangles in Fig. 4 lies uniformly
distributed between the Y-string and the ∆-string predictions, however.
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Fig. 4. Extracted values of V/R for: isosceles triangles (y = 0), at β = 6.0.
(a) unrestricted data (l.h.s.); (b) with hyperradius filter R ≥ 9.0. (r.h.s.).
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Fig. 5. Extracted values of V/R for: (a) all right triangles (x = 0.5) (l.h.s.);
(b) right triangles (y = 0) with hyperradius larger than 8.0, at β = 6.0, (r.h.s.).
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3. Conclusions

Comparing Fig. 4 with Fig. 2, we do not see major differences between
the Sakumichi analyses for different β values. Figures 2 and 4 also show
no major differences compared to the corresponding analyses [5, 6] of the
Koma and Koma data set [2]. The shape-dependent part of the confining
potential V/Rmust not change under scaling/renormalization, [7], therefore,
the β = 5.8 and β = 6.0 functional dependences must be identical, which
they are, within the uncertainties allowed by the error bars introduced in
the fitting procedure.
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