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The center vortex model, capable of explaining confinement and chiral
symmetry breaking, has been plagued by the lattice equivalent of Gribov
copies: different maxima of the gauge functional lead to different predic-
tions of the string tension. It is possible to resolve this problem using center
regions, loops evaluating to center elements, as a guide for the gauge fixing
procedure. The success of this approach was already shown, but the algo-
rithms came with an arbitrary free parameter. In recent development this
parameter has been fixed, even improving the results.
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1. Introduction

The center vortex model [1, 2] is based upon the center symmetry of
the action in lattice quantum chromodynamics. It describes the properties
of the vacuum by percolating vortices, that is, closed, quantized magnetic
flux lines of finite thickness, condensing in the vacuum. It can explain the
behaviour of Wilson and Polyakov loops [3], broken scale invariance [4], and
chiral symmetry breaking [5], although it still lacks a closed mathematical
formulation. To detect vortices in an SU(2) lattice, the gauge is fixed to
Direct Maximal Center Gauge using simulated annealing (SA): generating
random gauge matrices Ω(x), one numerically looks for maximizing the func-
tional

R2
SA =

∑
x

∑
µ

∣∣∣Tr [Ω(x)Uµ(x)Ω
†(x+ eµ)

]∣∣∣2 , (1)

with Uµ(x) being an element of SU(2) corresponding to the link pointing in
direction µ at lattice point x. A projection to the center degrees of freedom
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follows

Uµ(x)→ Zµ(x) = sign Tr
[
Ω(x)Uµ(x)Ω

†(x+ eµ)
]
. (2)

The string tension σ is estimated using Creutz ratios

χ(R, T ) = − ln
〈W (R+ 1, T + 1)〉 〈W (R, T )〉
〈W (R, T + 1)〉 〈W (R+ 1, T )〉

, (3)

withW (R, T ) being a Wilson loop of the size of R×T evaluated in the center
projected configuration after gauge fixing. From the asymptotic relation
〈W (R, T )〉 = e−σ R T−2 µ (R+T )+C with sufficiently high R and T follows
χ = σ.

Simulated annealing can lead to different local maxima of the gauge
functional RSA with differing physical properties: an improvement in the
value of the gauge functional can lead to an underestimation of the string
tension σ, see [6, 7] and Fig. 1, showing calculations for an SU(2) lattice.

Fig. 1. The string tension was calculated with 300 SU(2) Wilson configurations at
β = 2.3, in lattices of the size of 124 (left), 124 (middle) and 144 (right). The
literature value is based on [8]. With the increased number of simulated annealing
steps, the value of the gauge functional improves, but the string tension is lost.

By enforcing restrictions on the gauge matrices Ω(x), we can prevent this
loss of the string tension: only such transfomations are allowed that result
in non-trivial center regions [9] projecting onto −1. Previously published
versions of the respective algorithms came with a free parameter [10]. Now,
we present a parameter-free version, further improving the results.
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2. Detecting non-trivial center regions

After sorting the plaquettes of a configuration by rising traces, the list
is processed taking the plaquettes as origin for an enlargement procedure as
shown in Fig. 2. This procedure aims to push the evaluation of the growing

1) 2) 3)

Steps 1-3: Starting with a plaquette that neither belongs to a before identified center
region, nor was taken as origin for growing a region, it is tested, which enlargement
by a neighboring plaquette brings the new region nearest to a center element.

4) 5) 6)

Steps 4-6: If no enlargement leads to further improvement, a new enlargement pro-
cedure is started with another plaquette. During enlargement the new region could
grow into an existing one. The following steps describe the collision handling:

7a) 7b)

Step 7a: The evaluation of the grow-
ing region is nearer to a non-trivial cen-
ter element than the evaluation of the
old region: Delete the old region, only
keeping the mark on its starting pla-
quette and allow growing.

Step 7b: The growing region deviates
more from a non-trivial center element
than the existing one: try other en-
largements.

Fig. 2. The algorithm for detecting center regions repeats these procedures un-
til every plaquette either belongs to an identified region or has been taken once
as starting plaquette for growing a region. The arrow marks the direction of en-
largement, plaquettes belonging to a region are colored, plaquettes already used as
origin are shaded.

region as close towards a non-trivial center element as possible. Not all
resulting regions evaluate sufficiently near to a non-trivial center element,
hence a further selection is necessary. The identified regions are sorted by
rising trace. Within this sorted list, an inflection point before a stronger rise
in the values of the traces is identified, see Fig. 3. The interval, the inflection
point is searched in, is defined by a tangent through the point given by 1.1
times the value of the lowest trace at index 0. This is followed by identifying
the lowest possible single inflection point using a method based on second
difference quotients. All center regions within the list below this inflection
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point are taken into account during the gauge fixing procedure by simulated
annealing. This procedure is modified if non-trivial center regions appear or
vanish: appearance is always enforced, disappearance always forbidden.

Fig. 3. Non-trivial center regions are selected within a list of detected regions
sorted by rising trace. In this list, a second rise in trace is identified by fitting a
tangent (a). Within the interval from the lowest trace to this tangent point, the
lowest single inflection point is identified (b). All regions below this inflection point
are taken for further usage (c).

3. Results

The original simulated annealing procedure has the problem to result in
an underestimation of the string tension. By preserving non-trivial center
regions, the string tension can be recovered at the cost of a small reduction in
the value of the gauge functional and an increase in the size of the errorbars,
see Fig. 4. The dependence on the number of simulated annealing steps,
shown in Fig. 5, indicates that the improved procedure stays on literature
value after a sufficient number of steps.
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Fig. 4. We compare the original simulated annealing with our improved procedures
after 5 000 simulated annealing steps for 300 SU(2) Wilson configurations in lattices
of size 124 (left), 144 (middle) and 124 (right). The literature value is based on [8].
Our improvements clearly recover the string tension.

Fig. 5. With a rising number of simulated annealing steps, the original procedure
leads to an underestimation of the string tension, while our improvements stay on
literature value beginning with 2 500 steps. The data was calculated in a lattice of
the size of 144 for β = 2.3. The literature value is based on [8].
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