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The appearance of large, non-Gaussian cumulants of the baryon number
distribution is commonly discussed as a signal for the QCD critical point.
We review the status of the Taylor expansion of cumulant ratios of baryon
number fluctuations along the freeze-out line and also compare QCD re-
sults with the corresponding proton number fluctuations as measured by
the STAR Collaboration at RHIC. To further constrain the location of a
possible QCD critical point, we discuss poles of the baryon number fluctu-
ations in the complex plane. Here, we use not only the Taylor coefficients
obtained at zero chemical potential but perform also calculations of Taylor
expansion coefficients of the pressure at purely imaginary chemical poten-
tials.
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1. Introduction

The phase diagram of Quantum Chromodynamics (QCD) is currently
investigated with large efforts by means of heavy-ion experiments at the
LHC and RHIC, as well as by numerical calculations of lattice regularized
QCD. While lattice calculations at vanishing chemical potential made great
progress in the last decades, they are still harmed by the infamous sign prob-
lem at nonzero chemical potential. The two main methods that are currently
used to infer on the QCD phase diagram at nonzero baryon chemical po-
tential (µB) are indirect, they rely on Taylor expansions of observables at
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µB = 0, or analytical continuations from simulations at imaginary chemi-
cal potential (µB = iµI). Methods that allow for a direct sampling of the
oscillatory path integral at (µB) > 0 are currently investigated, see e.g. [1, 2].

The two principles that are guiding our understanding of the QCD phase
diagram are spontaneous chiral symmetry breaking and — linked to it —
the phenomena of quark confinement. Our knowledge on the (2 + 1)-flavor
QCD phase diagram based on recent lattice results is summarized in Fig. 1
(left). The variables assigned to the three axes are temperature (T ), the
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Fig. 1. (Color online) Left: Schematic picture of the QCD phase diagram. The chi-
ral limit (mu,d = 0) is shown in the front, whereas the physical mass case is shown
in the back. Right: The chiral crossover line in (2 + 1)-flavor QCD, calculated
with the constraints nS = 0 and nQ = 0.4nB . It is compared with the line of con-
stant energy density ε = 0.42(6) GeV/fm3 and the line of constant entropy density
s = 3.7(5) fm−3 [3] in the T–µB plane. Also shown are the chemical freeze-out pa-
rameters extracted from grand-canonical-ensemble-based fits to hadron yields for
the ALICE [4] and the STAR [5] experiments.

baryon chemical potential (µB) and light quark mass (mu,d). At low T and
low µB, the chiral symmetry is spontaneously broken and quarks are con-
fined into hadrons. Correspondingly, chiral symmetry is restored at high T
and high µB, where quarks can move freely1. Solid dark gray/red and
light gray/cyan lines indicate a continous phase transition in the univer-
sality class of the 3d–O(4) symmetric spin model, or the Z(2) symmetric
Ising model, respectively. Black lines and gray surfaces indicate a dis-
continuous first order transition. On the temperature axis, we also indi-
cate the pseudo-critical transition temperature at physical masses (Tpc),
the critical temperature in the chiral limit (Tc), the temperature of the
tri-critical point in the chiral limit (Ttri), and the temperature of the criti-
cal (end-)point at physical quark masses (Tcep). It emerges a hierarchy as

1 For simplicity, we are neglecting here various superconducting phases at low T and
high µB , which will not be discussed in this work.
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Tpc > Tc > Ttri > Tcep. The first two temperatures are determined by
lattice calculations as Tpc = 156(±1.5) MeV [6] and Tc = 132+3

−6 MeV [7].
The variation of Tpc with µB, as indicated by a dashed line, has also been
calculated by lattice QCD. We obtain

Tpc(µB)

Tpc(0)
= 1− κ2

(µB
T

)2
+O

(µB
T

)4
, (1)

where κB2 = 0.012(4) with an O(µ4B) correction that vanishes within er-
rors [6]. Similar results have been obtained recently in Ref. [8].

In Fig. 1 (right), we compare the pseudo-critical line with freeze-out
temperatures and chemical potentials obtained from hadron yields measured
by STAR [5] and ALICE [4]. The hadron yields have been fitted (after feed-
down corrections) to the hadron resonance gas (HRG) model. In its simplest
non-interacting version, this model is based on the mass spectrum of all
stable particles and resonances listed in the particle data booklet, which are
taken as an ideal gas in thermal equilibrium at a common temperature Tf ,
chemical potential µf , and volume Vf . As these parameters refer to the time
in the expansion of the fireball from when on its chemical composition does
not change anymore, they are called chemical freeze-out parameters. We
see from Fig. 1 (right) that the freeze-out parameters agree well with the
chiral crossover line obtained from lattice QCD. We note that in order to
meet conditions that are found in heavy-ion collisions, we have determined
our values for the electric µQ ≡ µQ(µB) and strangeness chemical potentials
µS ≡ µS(µB) such that the following conditions for the net-numbers of
conserved charges in the system, 〈nQ/nB〉 = 0.4 and 〈nS〉 = 0, are fulfilled.
However, the freeze-out parameters are still model based. Hence, in the
following, we want to follow a procedure proposed in [9] that allows for the
determination of the freeze-out parameters by a direct comparison of lattice
QCD to experiment.

2. Cumulants of net-baryon number

Higher order cumulants of the net-baryon number are obtained as deriva-
tives of the logarithm of the QCD partition functions with respect to the
dimensionless parameter µ̂B = µB/T

χBn (T, µB, µQ, µS) =
1

V T 3

∂n lnZ(T, µB, µQ, µS)

∂µ̂nB
, (2)

where µQ and µS are the electric charge and strangeness chemical potentials.
In the same way, we can also calculate derivatives with respect to µQ and
µS , which we denote as χQn and χSn , respectively.
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Aiming at the comparison with the experimental results, we further in-
troduce ratios of cumulants of baryon number fluctuations as

RBnm =
χBn
χBm

. (3)

By using these ratios, the leading order dependence on the freeze-out vol-
ume (Vf) is removed. However, among other things, fluctuations of the
experimentally observed freeze-out volume might still hinder a comparison
to lattice QCD. The first ratio we discuss is RB12, which is shown in Fig. 2
and can be interpreted as the mean of the net-baryon number, normalized
by the variance of the baryon number fluctuations. The presented HotQCD
results [10] are obtained from high statistics lattice QCD calculations on
323 × 8 and 483 × 12 lattices, with (2 + 1)-flavor of highly improved stag-
gered quarks (HISQ) at physical light- and strange-quark masses. The values
in the range of 0 < µ̂B . 1.2 stem from a Taylor expansion of the logarithm
of the partition function about µ̂B = 0 to 8th order in µ̂B. As it is evident
from the continuum estimate shown in Fig. 2 (left), the leading order of
RB12 is linear in µB. We further notice that the ratio is rather independent
under the variation of temperature. Therefore, the ratio has been termed a
baryometer [9].
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Fig. 2. Left: Continuum estimate of the cumulant ratio RB12 as a function of the
chemical potential, for different temperatures. Right: The same ratio along the
pseudo-critical line. Shown are the QCD and HRG model results.

The same ratio is shown in Fig. 2 (right), now plotted along the pseudo-
critical line as defined in Eq. (1). Here, we compare the QCD result with the
corresponding calculation of a Hadron Resonance Gas (HRG). We see that
the HRG model deviates from QCD only for µB & 150 MeV. We thus note
that for small µB, the HRG can be used to analyze the differences between
net-baryon number and net-proton number fluctuations. The latter is the
quantity which is directly accessible by heavy-ion experiments. On the other
hand, this also means that we do not see any indication of a diverging baryon



Net-baryon Number Fluctuations 245

number fluctuation (χB2 ) in the range where we trust our Taylor expansion,
which we would expect in QCD close to a critical point. In this case, the
ratio RB12 would decrease and approach zero at the critical point.

As higher order cumulants are expected to diverge more rapidly when
approaching a critical point, it is tempting to discuss also the ratios RB31 and
RB42 along the pseudo-critical line, which are shown in Fig. 3 as a function
of RB12 [10]. Since RB12 is still a monotonous function of µB in the plotted
range, it is a measure for the baryon density and enables us to compare
with the experiment in a model free way. We see that the overall agreement
with the corresponding net-proton number cumulants RP31 and RP42 from
STAR [11, 12] is very good. We conclude that a high freeze-out temperature
of Tf > 155 MeV seems to be excluded by the data. This lattice calculation
is based on an 8th order expansion of the logarithm of the partition function.
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Fig. 3. The cumulant ratios (bands) RB31 and RB42 versus RB12 on the pseudo-critical
line, calculated from a NNLO Taylor series. Data are results on cumulant ratios
of net-proton number fluctuations obtained by the STAR Collaboration [11]. Also
shown are preliminary results obtained at

√
sNN = 54.4 GeV [12]. Dashed lines

show joint fits to the data.

Finally, we want to mention that the radius of convergence, which is
inherent to the expansion of any thermodynamic observable, can in principle
provide valuable information on the phase structure of QCD. E.g., in the
case of a second order phase transition, we expect the convergence radius
to be limited by the critical point. A simple estimator for the radius of
convergence ρ̂ ≡ µcrit

B /T is given by the ratio estimator

ρ̂ = lim
n→∞

√
(n+ 2)(n+ 1)

∣∣χBn /χBn+2

∣∣ , (4)

more advanced estimators are also discussed [13]. Unfortunately, we have
only a limited number of expansion coefficients (cumulants χBn ) at our dis-
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posal, which makes it difficult to draw strong conclusions with given lattice
data, especially, since the statistical and systematical error on higher order
cumulants is drastically increasing with the order n. It is, however, interest-
ing to note that all expansion coefficients have to be positive if the limiting
singularity lies on the real axis. Hence, we can obtain an upper bound for
the phase transition temperature Tcep, as for T > 140 MeV many of the ex-
pansion coefficients turn negative [14]. This estimate is in good agreement
with the statement that the temperature of the QCD critical point shall
be lower than the chiral transition temperature (Tcep < Tc) as indicated in
Fig. 1 (left).

3. Cumulants at imaginary chemical potential

Besides the Taylor expansion method, lattice QCD calculations can also
be performed at purely imaginary chemical potential, followed by an analytic
continuation of the results. The QCD partition function is symmetric under
the transformation µ̂B → µ̂B +2πi. Any simulations at imaginary chemical
potential are thus constrained to the interval [−iπ, iπ] (first Roberge–Weiss
sector). We further note that even/odd order cumulants on this interval are
purely real/imaginary and are even/odd functions of Im[µ̂B]. Making use
of this symmetry, we thus need to simulate only in the interval [0, iπ] and
symmetrize/anti-symmetrize the data afterwards. We calculate the first four
cumulants of the baryon number. Preliminary results from 243 × 4 lattices
are shown in Fig. 4. We can see that the (purely imaginary) baryon number
density Im[χB1 ] develops a discontinuity at Im[µ̂B] = π. The temperature
where this is happening is called the Roberge–Weiss temperature (TRW),
which was estimated to be TRW = 201 MeV [15] (for Nτ = 4). In accordance
with this discontinuity, we also observe that the second cumulant χB2 devel-
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Fig. 4. Preliminary results of the first and second cumulant of the net-baryon num-
ber, χB1 , χB2 , as a function of the imaginary chemical potential for three different
temperatures, obtained from calculations on 243 × 4 lattices.
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ops a divergence at TRW. The universal scaling of the Polyakov-loop (order
parameter of the confinement transition) and chiral condensate have been
investigated close to the Roberge–Weiss transition [15].

The periodic data on χB1 can be analyzed in terms of Fourier coefficients
[16, 17], which are inherently linked to the canonical partition sums. The
aim of this project is, however, to use the information of all the available cu-
mulants to construct a precise rational function approximation, i.e. a [n,m]
Padé of χB1

χB1 ≈ Rmn (µ̂B) =
Pm
Qn

=

∑m
i=0 ai µ̂

i
B∑n

j=0 bj µ̂
j
B

. (5)

We are currently testing several methods to determine the coefficients ai, bj .
Among them is a direct solve method, where we directly solve a set of
equations that we obtain by equating the analytic expressions for Rmn as
well as its first few derivatives ∂jRmn /∂µ̂jB, j = 0, 1, 2 at each simulation
point with our lattice data

χBj+1

(
µ̂
(k)
B

)
=
∂jRmn (µ̂B)

∂µ̂jB

∣∣∣∣∣
µ̂B=µ̂

(k)
B

. (6)

Here, χBj (µ̂
(k)
B ) represent the numerical values of the cumulants at the simu-

lation points µ̂(k)B , as obtained by our lattice calculations. A similar method
is based on a χ2-fit of Rmn to our cumulant data. Finally, we are testing a
two-step approach where in a first step, a suitable interpolation of the lattice
data is chosen. In the second step, we are making use of the Remez algo-
rithm to determine Rmn until the min–max criteria are satisfied with respect
to the interpolation.

Having the approximation Rmn at hand, we are able to integrate the
baryon density to obtain the free energy, which will also develop a cusp at
TRW. However, our main interest lies in the determination of the roots of the
numerator Pm and denominator Qn, which will allow us to infer information
on the singularities in the complex µ̂B-plane. A singularity in the complex
plane is the reason for a finite radius of convergence of the Taylor series and
will also indicate a true physical phase transition when it approaches the
real axis in the complex µ̂B-plane.

There are two models that can guide our thinking about the location of
the singularities in the complex plane. At large temperatures, the thermal
branch cut singularities from the Fermi–Dirac distribution of a free quark gas
is expected to pinch the imaginary axis in the complex µ̂B-plane. In QCD,
such a behavior is expected to happen at TRW. In fact, this is something we
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already see, when we analyze the data shown in Fig. 4. How this thermal
singularity moves in the complex plane with decreasing temperature is shown
in Fig. 5 (left).
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Fig. 5. (Color online) Left: Singularity in the complex plane associated with the
branch cut singularity of the Fermi–Dirac distribution function of the quarks. The
position of the singularity is shown for three temperatures T = 201, 176 and
160 MeV from left to right. The results have been obtained from calculations
on 243 × 4 lattices. Right: Singularity in the complex plane associated to the
pole in the scaling function ff(z). The results are model predictions for Nτ = 4, 6

(blue/lower curve, green/higher curve) based on a mapping of QCD to the universal
3d–O(2) model.

At temperatures close to the chiral transition (Tc), we might be able to
map our results to the universal scaling behavior connected to the chiral
phase transition. The scaling function of the free energy ff(z) will have a
singularity in the complex z-plane, known as the Lee–Yang edge singular-
ity. This singularity has been recently determined [18]. Given a mapping
from QCD to the universal theory, defined by the non-universal constants
t0, h0, Tc, κ

B
2 [19], we can calculate the position of the singularity in the com-

plex µ̂B-plane, shown in Fig. 5 (right). Preliminary results from calculations
on 363 × 6 lattices at T = 145 MeV seem to be in rather good agreement
with this prediction. It will be very interesting but also challenging to see if
the singularity will approach the real axis in the complex µ̂B-plane for even
smaller temperatures.
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