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We present results from lattice QCD calculations for 2°4 and 4*" order
cumulants of conserved charge fluctuations and correlations, and compare
these with various High Resonance Gas (HRG) model calculations. We
show that differences between HRG and QCD calculations already show up
in the second order cumulants close to the pseudo-critical temperature for
the chiral transition in (2+ 1)-flavor QCD and quickly grow large at higher
temperatures. We also show that QCD results for strangeness fluctuations
are enhanced over HRG model calculations which are based only on par-
ticles listed in the Particle Data Group tables as 3-star resonances. This
suggests the importance of contributions from additional strange hadron
resonances. We furthermore argue that additional (repulsive) interactions,
introduced either through excluded volume (mean field) HRG models or the
S-matrix approach, do not improve the quantitative agreement with 2°¢ and
4*h order cumulants calculated in lattice QCD. HRG-based approaches fail
to describe the thermodynamics of strongly interacting matter at or shortly
above the pseudo-critical temperature of QCD.
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1. Introduction

The theory of strong interactions, Quantum Chromodynamics (QCD),
also describes the thermodynamics of strongly interacting matter at finite
temperature and density. It now is understood that at vanishing net-baryon-
number density, the transition from low to high temperature reflects the
physics of a true phase transition that occurs at vanishing values of the two
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light (up and down)-quark masses in QCD, and is due to the restoration of
chiral symmetry, which is spontaneously broken in the QCD vacuum and at
low temperatures [1]. QCD with its physical spectrum of light and strange
quark masses undergoes a smooth transition from hadronic bound states to
the quark—gluon plasma (QGP) at high temperature.

Hadron Resonance Gas (HRG) models can be used to describe the ther-
modynamics of QCD at low temperature where the degrees of freedom of
QCD matter are hadrons. This model assumes that interactions among
hadrons can be accounted for by production of hadronic resonances which
are added to thermodynamics as additional particles. The simplest imple-
mentation of a non-interacting HRG model considers a mixture of ideal Bose
gases for mesons and ideal Fermi gases for baryons. The total pressure of a
hadronic medium is then obtained as the sum over individual contributions
of partial pressures of different particle species. The HRG model can be
justified using the S-matrix-based virial expansion [2]. It has been shown
that using partial wave analysis of the experimental scattering data, non-
resonant repulsive and attractive interactions of hadrons largely cancel out
in the thermodynamic quantities, and thus, the interactions can be indeed
well-described by hadronic resonances [3]. This approach has been recently
revisited in several papers [4—6], where also some of the non-resonant (re-
pulsive) interactions were included.

HRG models have been used to extract information on thermal condi-
tions at the time of freeze-out of hadrons from a high temperature partonic
medium from experimental data on hadron yields [7|. However, a com-
parison of lattice QCD calculations of conserved charge fluctuations with
corresponding HRG model calculations shows that the latter deviates from
QCD results more and more with increasing temperature and deviations
are larger for higher order cumulants. This short-coming of simple, non-
interacting HRG models has been attempted to compensate by either taking
into account further contributions from repulsive interactions through ther-
modynamic calculations with extended hadrons [8] or with a repulsive mean
field [4], since a comprehensive treatment of the repulsive interactions in the
S-matrix approach is not yet available. While these modifications of point-
like, non-interacting HRG model calculations generically lead to a reduction
of cumulants of conserved charge fluctuations, there is also evidence that
strangeness fluctuations calculated in QCD are larger than those obtained
in HRG model calculations based only on experimentally well-established
(3-star resonances) hadrons listed by the Particle Data Group (PDG). One
popular approach to address this issue is to include in HRG model calcula-
tions additional strange hadron resonances which are not listed in the PDG
tables [9-11], but are obtained in quark model calculations [12, 13]. This
may also be interpreted as an attempt to take care of further interactions.
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We will present here a comparison of various cumulants of conserved
charge fluctuations, calculated in (2 + 1)-flavor lattice QCD [9, 10], with
different HRG model calculations. We mainly focus on the temperature
range close to the transition temperature which is relevant for setting the
baseline for heavy-ion collision experiments. In the following, we refer to
the standard non-interacting HRG as PDG-HRG, where we consider down
to 3-star hadrons and hadron resonances listed in PDG 2020 [14]. We also
extended the HRG model based on resonances listed by the PDG by using
additional hadronic resonances obtained in relativistic quark model calcula-
tions (QM-HRG [12, 13]). Furthermore, we discuss modifications of the non-
interacting HRG models obtained by including further interactions between
hadrons either through excluded volume or mean field effects (EV-HRG), or
an advanced treatment of the S-matrix approach to the thermodynamics of
strongly interacting hadrons.

2. Second order cumulants of conserved charge fluctuations
and correlations

Here, we will discuss second order cumulants of net-baryon-number (B)
and strangeness (5) fluctuations. In particular, we will compare the second
order cumulants to various HRG model calculations and discuss to what
extent deviations from HRG model results show up already on the level of
these low order cumulants.

The pressure of the QCD partition function can be written as

P 1
T VT3
Generalized susceptibilities, i.e. the cumulants of conserved charge fluctua-

tions, can be obtained by taking derivatives of the pressure with respect to
baryon (up), electric charge (ug) and strangeness (1) chemical potentials
at fi = (uB, p@,ps) =0
XﬁnQnS _ 8l+m+np/T4 ‘ (2)
pp/T)0(ng/T)™0(1s/T)" |5

an(V7T7 MB?MQ’:U’S)' (1)

2.1. Charge fluctuations

In Fig. 1 (left) and (middle), we show results for net-baryon-number (y5)
and strangeness (x5) fluctuations (2"4 order cumulants). Results obtained
on lattices of the size of N2 x N,, with N, = 4N, in (2 + 1)-flavor QCD
simulations using the HISQ action [10, 15|, are shown for several values of
the lattice spacing, i.e. several values of temporal lattice extent aN; = 1/T.
These data have been extrapolated to the continuum limit using a quadratic
Ansatz for discretization errors in (a7’). As discussed above, we compare
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these results to the HRG model calculations based on hadron spectra listed in
the PDG and obtained in quark model calculations, respectively. Some basic
formulas for the HRG model calculations are given in Appendices A and B.
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Fig.1. Second order net-baryon-number (left) and strangeness (middle) fluctua-
tions as well as their ratio (right).

It is quite evident for xZ and x5 that PDG-HRG curves provide only
a poor description of the QCD results close to the transition region. The
agreement of HRG model and QCD results improves when one includes
additional strange-baryon resonances in the spectrum that are predicted
in quark model calculations (QM-HRG). However, as can be seen clearly
in Fig. 1 (right), the non-interacting HRG model calculations do not give a
reasonable description of the QCD results at temperatures above the pseudo-
critical temperature for the chiral transition, T,e = (156.5 £ 1.5) MeV [15].
In particular, HRG results for the XQB / Xég ratio continue to rise above T},
while the QCD results have a maximum close to T}, and then drop towards
the non-interacting quark gas value, (x2/x3)7 00 = 1/3. Similarly, it is
apparent that temperature derivatives of the 2°! order cumulants keep rising
in the HRG model calculations, while they reach a maximum for the QCD
results close to Tj..

At large temperatures, the HRG model results are significantly larger
than the QCD results. This may, partly, be compensated by introducing
repulsive interactions in the baryon sector of HRG. When using an excluded
volume of the size of b ~ 0.4/T3, which corresponds to 7T ~ 0.3 or a hadron
radius that varies in the range of (0.45-0.34) fm in the temperature range of
(130-175) MeV that is of interest in our study', we find a reduction of xZ of
about 20% in the transition region. The influence on strangeness fluctuations
is much smaller, i.e. about 8%, as these are dominated by mesons. We show
results for the QM-HRG with excluded volume effects for baryons (EV-
HRG) in Fig. 1. It is apparent that the hadronic interaction considered
here is not sufficient to describe the QCD data. They rather tend to worsen
the agreement between HRG and QCD calculations achieved by introducing
additional strange-baryon resonances.

! Note that a constant radius r ~ 0.39 fm has been used in [16, 17], which is close to
our value of r in the pseudo-critical region.
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2.2. Charge correlations and constraints on second order cumulants

In Fig. 2, we show QCD results for correlations among conserved charge
fluctuations and compare with the HRG model calculations as discussed
above for the 2" order cumulants of conserved charge fluctuations. The
general picture is the same. Additional strange-baryon resonances seem to
be needed to improve agreement between the HRG model calculations for
BS-correlations and corresponding QCD results, and the inclusion of repul-
sive interactions among baryons through excluded volume effects seems to
deteriorate this agreement. Also shown in Fig. 2 is the result of an S-matrix
calculation [5] that takes into account resonance decays in the AT+ < N*x
channel (see also Appendix C). As can also be seen, the S-matrix approach
leads to a reduction of correlations between net-baryon-number and electric
charge. The contribution of doubly charged A*" resonances seems thus to
be suppressed.
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Fig.2. Second order cumulants of net-baryon-number fluctuations correlated with
net-electric charge (BQ) and strangeness (BS) fluctuations, respectively.

The three conserved charges (B, @, S) give rise to the 6 second order
cumulants of charge fluctuations and cross-correlations. In the isospin sym-
metric limit of degenerate up and down quark masses, which usually is used
in lattice QCD calculations, only 4 of these cumulants are independent as
isospin symmetry imposes the two constraints

QS

B
Xég = 2x79 Q

B BS
X2 =2x11° — X11 - (3)

This gives rise to three independent cumulant ratios, for instance, the set of
three ratios of second order cumulants shown in Fig. 3. In Table I, we give re-
sults for continuum extrapolations of these three ratios at the pseudo-critical
temperature, T, = 156.5(1.5) MeV, for the chiral transition in (2 + 1)-flavor
QCD. Note, for instance, that due to the first constraint in Eq. (3), the
X% /x5 ratio shown in Fig. 1 (right) is related to the two ratios x2°/x3 and

BS
- X11 >

X2/ X%S shown in Fig. 3 and given in Table I at T},
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Fig. 3. Continuum extrapolated results for 2°¢ order cumulant ratios.

TABLE I

2nd

Continuum extrapolated results for three independent ratios of order cumulants

at the pseudo-critical temperature Ti,.

S B
XIS | BN | il /S
—0.241(4) | 1.10(4) | 0.059(14)

3. Fourth order cumulants of conserved charge fluctuations
and correlations

In a non-interacting HRG (PDG-HRG or QM-HRG), ratios of cumulants
involving net-baryon-number fluctuations that differ only by an even number
of derivatives with respect to the baryon chemical potential are unity, e.g.
for fourth order cumulants ¥ /xF = &% /x5% = Xle/XﬁQ = 1. This
reflects that all known hadrons with non-zero baryon number have |B| = 1.
This, of course, does not hold in QCD at high temperatures where quarks
carry non-integer baryon number. As a consequence, the above ratios are all
found to be smaller than unity in lattice QCD calculations. They are shown
in Fig. 4.

At low temperatures, the deviations from unity follow a trend also present
in HRG model calculations that incorporates excluded volume effects. This
is also shown in Fig. 4. Although the agreement of these model calculations
with lattice QCD data seems to be reasonable below the pseudo-critical
temperature, we note that this is to some extent accidental as the EV-HRG
calculations do not provide an adequate description for neither the numera-
tor nor the denominator of these ratios. E.g., in the case of quadratic (xZ)
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Fig. 4. Ratios of some fourth and second order cumulants.

and quartic (x?) net-baryon-number fluctuations, the EV-HRG calculations
both underestimate the QCD results. We also note that in the present im-
plementation of the S-matrix approach, the XﬁQ / XﬁQ ratio remains unity
like it is the case in non-interacting HRG models.

4. Conclusions

Qualitative features of 2" and 4*" order cumulants of conserved charge
fluctuations and correlations, calculated in lattice QCD, are reasonably well-
described by non-interacting HRG models up to the pseudo-critical temper-
ature for the QCD transition. At higher temperatures, significant deviations
quickly set in, being large already for temperatures about 10% higher than
T, and being larger for 4™ than for 2°¢ order cumulants. In order to reach
a somewhat satisfactory description of strangeness fluctuations, the addi-
tion of strange resonances calculated in quark models (QM-HRG model) is
needed, which may be viewed as taking care of additional interactions, rep-
resented for instance in less well-established resonances listed in the PDG,
which are not reflected in HRG models based on down to 3-star resonances
only. Including further interactions through e.g. excluded volume, HRG
models (EV-HRG) or S-matrix approaches do not seem to lead to a further
quantitative improvement of many of the cumulants considered here.
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ory (BEST) Topical Collaboration, and (i) the Office of Nuclear Physics
and Office of Advanced Scientific Computing Research within the framework
of Scientific Discovery through Advance Computing (SciDAC) award “Com-
puting the Properties of Matter with Leadership Computing Resources”.
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Appendix A
Non-interacting HRG Model

The pressure of a non-interacting hadron gas can be written as a sum
of contributions for mesons (M) and baryons (B) and the corresponding
anti-particles (M, B)

U e P e T (A1)

P 9 X -1 k+1 Lk L

i Z, %;_2 (%) Z ( k;)2 K2< T;H> exp [k’CH-M/T}
HEB,B =1
+Z 272 (mH) Z 12 <]m;H> exp [kC_:H/I/T} . (A2)
HeM, M

where C_"H = (By,Qumu,Su) represents the conserved charges, i.e. baryon
number, electric charge and strangeness number of the hadron H, and
KB, Q. its are the baryon, electric charge and strangeness chemical poten-
tials, respectively. Ko is the modified Bessel function of the second kind.
Generalized susceptibility can be obtained from Eq. (2)

BQRS _ g my my
=3 2 () shansi ()
HeB,B

+> %(?)in%)m(k&;) kf@(’“;”f) (A3)
HeM,M k=1

In Eq. (A.3), the first term corresponds to the baryon sector, where we only
used the Boltzmann approximation to the Fermi sum given in Eq. (A.2),
and the second term corresponds to the meson sector. Note that the second
term will drop out from Eq. (A.3) for any baryonic observables as baryon
number (B) is 0 for mesons.

Appendix B
FExcluded volume HRG model

In excluded volume, we only consider the interaction between baryons,
BB, and anti-baryons, BB. The meson-meson, MM, and meson-baryon,
MB(B), as well as baryon-anti-baryon, BB, interactions are neglected.
Hence, the excluded volume will only modify Pgp and Pp independently,
and the total pressure Eq. (A.1) can be replaced by

P = Py + Py, + P + pint (B.1)

where the interacting baryon or anti-baryon pressure can be written as
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I:’g/tB = Z P}?(T,ﬁ) exp {—b'pgl/té} , (B.2)
HeB/B

with &' = bT3, P = P/T* and P(T, i) denoting the ideal gas pressure for
baryon species H with mass my. This equation may be solved iteratively

2

PR = > PRT )=V | Y PT.Q) (B.3)
HeB/B H,H'€B/B

+ (30%)2) S BT+

H,H' H"c€B/B

For the baryon species H, P}?(T,ﬁ) can be written from Eq. (A.2) using
the Boltzmann approximation as

Pid = 2971:2(mH/T)2K2<“;F> exp [CH.ﬁ/T] . (B.4)
The term linear in b appearing in Eq. (B.4) acts as a repulsive term. It
decreases the pressure and is related to the second virial coefficient. The
term quadratic in b acts as an attractive term. However, since P}? ~
exp(—myg /T), only the term linear in b will survive for my > T at high tem-
perature, i.e. excluded volume effects are predominantly repulsive. More-
over, since for low temperatures P}}i — 0, P}}‘t will also approach P}?.

Generalized susceptibilities can be obtained by taking derivatives of
Eq. (B.2) with respect to chemical potentials (up, g and pg). We also
note that the resulting equations in the mean field approach [4] are quite
similar to those obtained in the excluded volume approach. The difference
is that in mean field approach the repulsive interactions have been used only
for the baryon octet and decuplet, while in the excluded volume approach,
one generally considers interaction between all baryons.

Appendix C

S-matriz formalism

In the S-matrix formalism as used here by us, we only considered the
decay and production of N*and A™" to pion and nucleon in a hot hadron
gas. The pressure can then be separated into two parts; one part arises from
the interaction of pion and nucleon, the other part describes the contribution
from all other particles
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P=PpPiy > P, (C.1)
1,=3/2,1/2
7 ds
Piﬂt:g/ Ko(e/T) (¢/T)% £2LL 2
| de Kole/m) (/1) 2 (©2)
Mth

where P'¢ is the same as in Eq. (A.2), but without the contribution from
A**A and N* resonances. Their contribution to the pressure is included in
the P, Here, we follow the notation and steps of |3, 5] for calculating the

cumulants of net-baryon-number and electric charge correlations, ng , in
the S-matrix approach.
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