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INTERVIEWING THE WEAK WITH STRONG
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VISCOSITY RATIO IN QCD∗
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We analyze the thermal profiles of the bulk to shear viscosity ratio in
a quasiparticle framework which describes the interaction in a deconfined
medium through dynamical masses of its constituents. The temperature de-
pendence of the effective masses is specified by a running coupling deduced
from the lattice QCD thermodynamics. To study the impact of dynam-
ical quarks on the transport properties of the hot medium, we confront
the results in Nf = 2 + 1 QCD with the observations in pure Yang–Mills
theory. We show that dynamical quarks modify the behavior of the bulk
to shear viscosity ratio and delay the restoration of conformal invariance.
Around the (pseudo)critical temperature in both theories, the bulk to shear
viscosity ratio behaves linearly in the squared speed of sound, as found in
the AdS/CFT approach. At high temperature, the behavior of the ratio
becomes quadratic, which corresponds to the perturbative QCD scaling.
Thus, we find that the quasiparticle model is capable of describing the
transport properties of the QCD in the weak and strong coupling regimes.
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1. Introduction

Transport parameters of strongly interacting matter are essential quan-
tities which reveal the information not only about its transport properties
but also about the dynamical evolution of the system. The transport prop-
erties of the hot QCD medium are usually quantified by the dimensionless
ratio of the shear viscosity to entropy density η/s and the specific bulk
viscosity ζ/s. The shear viscosity characterizes the dissipation of the en-
ergy during the longitudinal motion of the fluid. The η/s ratio exhibits a
minimum near the critical temperature Tc and increases with temperature in
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different thermodynamic systems. On the other hand, the bulk viscosity ζ/s
reflects the reaction of the fluid to a change of its volume and is expected to
have a maximum in the vicinity of the deconfinement phase transition. At
high temperatures, the ζ/s vanishes, indicating that the system approaches
the conformal limit. The specific shear and bulk viscosities have been exten-
sively examined in various approaches, such as the first-principle computa-
tional techniques, perturbative methods, or a class of effective models. The
recent overview of different studies has been reported in [1, 2].

Another interesting but rarely studied quantity is the dimensionless ratio
of the bulk to shear viscosity ζ/η, which is anticipated to behave differently
in strongly- and weakly-coupled systems [3]. In strongly-coupled theories,
including QCD around Tc, the ratio is linearly quantified by the speed of
sound squared c2

s [4], while in theories with a weak coupling [5, 6], includ-
ing the perturbative QCD (pQCD) approach [7, 8], the ζ/η is expressed
quadratically in terms of c2

s .
In this write-up, we will explore the above dependencies in the effec-

tive kinetic approach, where the deconfined matter is described through the
quasiparticle excitations with dynamically generated effective masses [1, 2].
We compute the ζ/η ratio for the pure gluon plasma and the quark–gluon
plasma (QGP) with light and strange quarks, confronting the results with
the available lattice data and the pQCD predictions. Parametrizing the ra-
tio by the linear and quadratic ansantzes in the speed of sound squared,
we show that the QPM provides an effective interpolation between the non-
perturbative and perturbative QCD regimes.

2. Transport parameters in the quasiparticle model

In the kinetic theory under the relaxation time approximation, the QGP
is considered as a nearly equilibrated diluted medium. The shear viscosity η
and the bulk viscosity ζ are defined as [1–3, 9]
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where the ± corresponds to bosons and fermions, respectively. In QCD
with Nf = 2+1, the total coefficients are given by a sum of the contributions
coming from light (up + down) and strange (anti-)quarks, as well as from
gluons, while in pure Yang–Mills theory, the sum is composed solely of the
gluon component. The degeneracy factors di are given as dl,l̄ = 12 for light
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(anti-)quarks, ds,s̄ = 6 for strange (anti-)quarks, and dg = 2(N2
c − 1) = 16

for gluons. For the equilibrium momentum-distribution function f0
i , we take

the Fermi–Dirac (Bose–Einstein) statistics, f0
i = (exp(Ei/T )±1)−1. We as-

sume that the particles propagate on-shell with the energies Ei =
√
p2 +m2

i .
The remaining terms in Eqs. (1), (2), the relaxation time τi and the speed
of sound squared c2

s , are discussed later.
As one may notice, the bulk viscosity depends on the derivative of the

mass ∂m2
i /∂T

2, indicating that the mass is temperature dependent. One of
the essential building blocks of the QPM are the dynamical masses of the
particles, which change as they propagate and interact with the medium. We
consider the QGP as a system of the quasiparticle excitations, i.e. weakly
interacting particles with the effective masses expressed as

m2
i =

(
m0

i

)2
+Πi , (3)

with the bare masses m0
l = 5MeV, m0

s = 95MeV and m0
g = 0. The temper-

ature and coupling dependence is introduced by the dynamically generated
self-energies Πi [10, 11]
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The effective coupling G(T ) is extracted from the entropy density calculated
in lattice gauge theory for pure Yang–Mills [12] and for QCD with 2+1 quark
flavors [13]. The coupling not only reproduces the perturbative dynamics
at high temperature, but also covers the non-perturbative QCD features in
the vicinity of the (pseudo)critical temperature [1]. We discuss the impact
of G(T ) on the transport parameters in Sec. 3.

Coming back to Eqs. (1), (2), the relaxation time τi appears as a pa-
rameter of the approximate solution to the Boltzmann equation. In general,
each transport coefficient is related to a particular dissipative phenomenon
occurring in the viscous fluid. Thus, the shear and bulk viscosities should
be characterized by separate relaxation times. Instead, for this study, we as-
sume that the viscosities share a common τi for a given quasiparticle species.
This allows us to obtain the ζ/η ratio independent of the relaxation time,
whose careful evaluation has been presented in [1].

2.1. Speed of sound

In order to confirm that the thermodynamics controlled by the effective
coupling of the QPM is consistent with the original lattice data, we compute
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the speed of sound squared using

c2
s =

s

T

(
∂s

∂T

)−1

, (6)

where s is the total entropy density of the QGP calculated as a function of
temperature [1].

Figure 1 shows numerical results for the c2
s in pure Yang–Mills theory

(left) and in QCD with Nf = 2 + 1 (right). We notice that the speed of
sound squared obtained in the QPM for the pure gluon plasma is in excellent
agreement with the corresponding lattice QCD data both in the confined and
the deconfined phase [12]. Moreover, below Tc, the QPM and the lQCD are
consistent with the c2

s in a glueball resonance gas with the Hagedorn density
of states [14].

Fig. 1. Speed of sound squared as a function of temperature. Left: The re-
sult obtained in the quasiparticle model (full circles) for pure Yang–Mills theory
with Tc = 0.26GeV (dashed line) is compared to the c2s obtained from the lat-
tice QCD calculations [12] (open triangles), and from the glueball resonance gas
with the Hagedorn spectrum [12, 14] (diamonds). Right: The same quantity but for
Nf = 2+1 (squares) shown along with the corresponding lattice QCD data [13] (tri-
angles) and [15] (circles) and the c2s in the hadron resonance gas which considers the
states with masses below 2.5 GeV [16] (diamonds). The pseudocritical temperature
Tc = 0.155GeV is indicated by the dashed line.

In QCD with 2 + 1 quark flavors, the QPM fairly reproduces the lattice
QCD results [13, 15]. Below the pseudocritical temperature and within the
considered uncertainties, the QPM also agrees with the c2

s in the hadron
resonance gas (HRG) model [16]. However, right above Tc, the speed of
sound squared in the HRG model exhibits a distinct deviation from the
QPM and the lattice data, showing the boundary of the hadronic picture.
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The non-monotonic behavior of the c2
s around Tc indicates the first-order

phase transition in pure Yang–Mills theory and the crossover in QCD. This
is a consequence of an apparent change of the lattice entropy density at Tc

in both cases.

3. Bulk to shear viscosity ratio

Assuming equal relaxation times for the shear and bulk viscosities, we
compute the ζ/η ratio using Eqs. (1), (2). In Eq. (2), the speed of sound
squared is one of the main factors which quantifies the conformality of the
system. As the c2

s reaches the Stefan–Boltzmann limit, c2
s = 1/3, the bulk

viscosity vanishes, indicating the restoration of conformal invariance. There-
fore, finite ζ measures the deviation of the system from the conformal limit.
This observation comes straightforwardly from the high-temperature limits
of Eqs. (2) and (6).

For strongly-coupled theories and gauge/gravity duality, the behavior of
the ratio is described as [4]

ζ

η
∝
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1

3
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)
. (7)

In contrast, for weakly-coupled systems, such as an interacting photon
gas [5], and in scalar field theories [6], the bulk to shear viscosity ratio is
determined as
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The perturbative QCD [7, 8] also suggests that at high temperatures, the
bulk to shear viscosity ratio follows a tendency given by Eq. (8).

To identify the role of the quasiquarks in the restoration of conformal
invariance, we compare the ζ/η ratio for the QGP to the corresponding
result for the pure gluon plasma. Based on the observations in [3, 17, 18],
we approximate our results by the conformality measure ∆c2

s = 1/3 − c2
s

with the fit parameters α, β, γ and δ
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Figure 2 illustrates the bulk to shear viscosity ratio in pure Yang–Mills
(left) and in QCD with Nf = 2 + 1 (right). Around Tc in pure SU(3) theory,
the ratio ζ/η exhibits a linear dependence on ∆c2

s , while at higher temper-
atures, the scaling becomes quadratic. A clear changeover is observed at
T ' 1.3Tc. This observation is in line with the overall behavior of ζ/η
found earlier in a similar quasiparticle approach [3]. Near the first-order
phase transition, our result is also consistent with ζ/η deduced from the
available lattice data [19, 20].

Fig. 2. The bulk to shear viscosity ratio as a function of T/Tc in pure Yang–
Mills theory (left) and QCD with Nf = 2 + 1 (right). In both figures, the linear
and quadratic parameterizations are obtained, respectively, from Eqs. (9) and (10)
with a set of fit parameters. Additionally, we present the results deduced from the
perturbative QCD approach [7, 8] (full pentagons). Left: ζ/η in the QPM (full
circles) shown along with the lattice data [19] (open diamonds), [20] (open circles)
and the approximations for strong (dashed line) and weak (solid line) coupling
regimes computed with α = 4.5, β = −0.3, γ = 12, δ = 0.002. Right: The ζ/η
ratio in the QPM for Nf = 2 + 1 QCD (full squares), parameterized lin-
early (checkered band) and quadratically (plain-colored band) in ∆c2s , using
α = 2.15, β = −0.085, γ = 14, δ = 0.

Further, for temperatures T ≥ 1.4Tc, the QPM ratio corresponds to the
pQCD estimation [7, 8], where the shear and bulk viscosities are expanded
in the coupling up to the next-to-leading-log (NLL) order

ηNLL =
T 3

g4

η1

ln(µ∗1/mD)
, ζNLL =

Aα2
sT

3

ln(µ∗2/mD)
. (11)

Here, αs =g2/4π is the strong coupling andm2
D =(1+Nf/6)g2T 2 is the Debye

mass squared. The set of parameters is given by η1 =27.126, µ∗1/T =2.765,
A = 0.443 and µ∗2/T = 7.14 for Nf = 0, and η1 = 106.66, µ∗1/T = 2.957,
A = 0.657 and µ∗2/T = 7.77 for Nf = 3.
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In QCD with Nf = 2 + 1, the ratio ζ/η scales as in pure Yang–Mills the-
ory, but the changeover from linear to quadratic ansatz is shifted towards
a higher temperature, T ' 2Tc. Close to Tc, the ratio is well described by
the linear parameterization in ∆c2

s , while the quadratic approximation ap-
parently differs due to the presence of dynamical quarks. Near the crossover
region, the effective coupling carries the non-perturbative QCD features,
which result in rather large values of G(T ) [1] and influence the behavior
of ζ/η ratio. The inclusion of the matter fields also generates a somewhat
larger discrepancy between the QPM and the pQCD ratios.

For a deeper analysis of the connection between the bulk viscosity and
conformality, we evaluate the bulk to shear viscosity ratio as a function of
the measure ∆c2

s . We additionally consider the temperature profiles of the
speed of sound squared for T ≥ Tc in both theories. The numerical results
are presented in Fig. 3. It is clear that as T → ∞, the c2

s approaches the
Stefan–Boltzmann limit. However, it happens much faster in pure Yang–
Mills theory than in QCD with light and strange quarks. Consequently, the
appearance of dynamical quarks delays the restoration of conformal invari-
ance. The right panel of Fig. 3 additionally illustrates the changeover from
linear to quadratic scaling of the ζ/η ratio.

Fig. 3. The scaled temperature (left) and the bulk to shear viscosity ratio (right)
as functions of the conformality measure, ∆c2s = 1/3− c2s , normalized by its value
at Tc in pure Yang–Mills theory (full circles) and in QCD (full squares).

4. Conclusions

Utilizing the successful quasiparticle model (QPM), we have assessed the
influence of dynamical quarks on the behavior of the bulk to shear viscosity
ratio. The ζ/η reflects the capability of the QPM to cover the weak and
strong coupling regimes in pure Yang–Mills theory and QCD with Nf = 2+1
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at vanishing chemical potential. Comparing the results for both theories,
we studied the flavor dependence of ζ/η ratio and quantified the role of
dynamical quarks in the restoration of conformal invariance.

Based on kinetic theory under the relaxation time approximation, the
QPM describes the deconfined matter in terms of weakly-interacting quasi-
particles with dynamically generated masses depending on the effective run-
ning coupling. The temperature dependence of the coupling is defined from
the entropy density computed on the lattice with a corresponding number
of flavors.

We have verified the thermodynamics of the model and its effectiveness in
the description of bulk parameters by computing the speed of sound squared.
We observed that the QPM reproduces the c2

s not only at high temperature
but also close to Tc. Moreover, it agrees with the result below but near
the critical temperature, when a tower of hadronic resonances should be
considered. Thus, the non-trivial QCD physics is correctly encoded in the
effective coupling of the QPM.

Assuming equal relaxation times for the viscosity coefficients, we have
computed the ratio of ζ/η and confronted it with the linear and quadratic pa-
rameterizations in terms of ∆c2

s = 1/3− c2
s which measures a deviation from

conformal invariance. We noticed that the ratio scales linearly near Tc, in ac-
cordance with the estimation given by the AdS/CFT approach for strongly-
coupled theories [4]. As the temperature grows, the linear approximation
switches to the quadratic one, which corresponds to the perturbative QCD
expectation [7, 8]. Hence, the QPM effectively covers the non-perturbative
and perturbative domains with a changeover depending on the number of
flavors. While in pure Yang–Mills theory it emerges at T ' 1.3Tc, in QCD
with Nf = 2 + 1, it appears at T ' 2Tc. Therefore, the temperature
range of the non-perturbative QCD is interestingly extended for a system
with dynamical quarks. The quasiquarks also play an important role in the
restoration of conformal invariance. In QCD, it is considerably delayed and
takes place at a higher temperature in comparison to the pure Yang–Mills
scenario.

To provide more reliable profiles of the transport parameters essential
for the hydrodynamic simulations, one can modify the QPM introducing a
finite chemical potential or separate relaxation times for the shear and bulk
viscosities, which we leave as our future tasks.
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