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We review recent results on the QCD phase transition line and second-
order fluctuations and correlators of conserved charges calculated in lattice
QCD. In the case of fluctuations, we compare them to the Hadron Res-
onance Gas model and construct proxies that allow a direct comparison
between first principle simulations and measurements.
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1. Introduction

We live in a very exciting era for the study of strongly interacting matter
under extreme condition. The experimental program at RHIC is running till
2021 with the Second Beam Energy Scan (BESII), trying to find the elu-
sive critical point on the phase diagram of strongly interacting matter. The
study of dense matter will not finish with RHIC, as the FAIR facility with
its Compressed Baryonic Matter (CBM) program is currently being built
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at the GSI in Germany and the NICA program will start running in a few
years. Besides, new exciting possibilities to study the properties of ultra-
dense matter are coming from astrophysical observations of Gravitational
Wave and Neutron Star properties.

Lattice QCD can provide results for several first principle observables
to support the experimental program, such as the equation of state, which
is needed as an input in hydrodynamical simulations, the QCD transition
line and constraints on the location of the critical point, and fluctuations
of conserved charges. At the moment, direct simulations at finite chemical
potential µB are not possible due to the sign problem. There are two main
alternative methods to extend the lattice results to finite density: the Tay-
lor expansion of thermodynamic observables in powers of µB/T [1–13] or
simulations at imaginary µB, followed by an analytical continuation of the
results to real µB [14–31].

In this contribution, we will focus on the latter, discussing the recent
results from our collaboration on the phase transition line [32] and correlators
of conserved charges [33], and proposing measurements that can be compared
to our data.

2. The phase transition line

The QCD transition line can be parametrized as follows:

Tc(µB)

Tc(µB = 0)
= 1− κ2

(
µB

Tc(µB)

)2

− κ4
(

µB
Tc(µB)

)4

+ . . . , (1)

which we will calculate along the strangeness neutrality line, a trajectory in
the QCD phase diagram which is relevant to phenomenology, as the values of
µS and µQ (strangeness and electric charge chemical potentials) are functions
of T and µB that satisfy the following experimental conditions:

〈nS〉 = 0 , 〈nQ〉 = 0.4〈nB〉 . (2)

The coefficients κ2 and κ4 can be determined by either one of the stan-
dard extrapolation methods listed above. A direct evaluation of the µB-
derivatives at µB = 0 was used in Refs. [10, 34, 35]. Here, we use the an-
alytical continuation from imaginary-µB method, which results in a larger
signal-to-noise ratio [23, 24]. The results for κ2 obtained with the two meth-
ods were thoroughly compared in Ref. [29].

The observables under study are the renormalized dimensionless chiral
condensate and susceptibility, defined as〈

ψ̄ψ
〉

= −
[〈
ψ̄ψ
〉
T
−
〈
ψ̄ψ
〉
0

] mud

f4π
, (3)
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χ = [χT − χ0]
m2
ud

f4π
, with (4)

〈
ψ̄ψ
〉
T,0

=
T

V

∂ logZ

∂mud
, χT,0 =

T

V

∂2 logZ

∂m2
ud

, (5)

where mu = md = mud. The subscripts T, 0 indicate values at finite- and
zero-temperature, respectively. In the following,

〈
ψ̄ψ
〉
(the chiral conden-

sate) and χ (the chiral susceptibility) are always shown after applying the
correction to satisfy 〈ns〉 = 0 with zero statistical error.

Our results are obtained using 4-stout improved staggered fermions with
an aspect ratio LT = 4 and temporal lattice sizes Nt = 10, 12, 16. The
quark masses are set at their physical values. The upper left and right panels
of Fig. 1 show the chiral condensate and susceptibility as functions of the

Fig. 1. (Color online) Renormalized chiral condensate
〈
ψ̄ψ
〉
(upper left) and chiral

susceptibility χ (upper right) as functions of the temperature for the intermediate
lattice spacing in this study. The black, first from the top, curves correspond to
vanishing baryon density, while results for various imaginary values of the chemical
potential are shown in shades of grey (other colors). Finally, in the lower panel,
we show the susceptibility as a function of the condensate. In this representation,
the chemical potential dependence is very weak.
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temperature, calculated at different values of the imaginary chemical poten-
tial. The lower panel shows the chiral susceptibility plotted as a function
of the chiral condensate. It is clear from this last plot that the chemical
potential dependence of the curves is lost in this case. We exploit this fea-
ture in our analysis, which leads to a more precise determination of Tc and,
as a consequence, of κ2 and κ4. In fact, it allows a simple parametrization
of χ as a function of

〈
ψ̄ψ
〉
in terms of a low-order polynomial. The peak

in
〈
ψ̄ψ
〉
corresponds to a “critical value” of

〈
ψ̄ψ
〉
, which in turn identifies a

value for the transition temperature. The uncertainty in several of the steps
described above leads to 256 independent analysis, which are folded into the
systematic error. Our results are

Tc = 158.0± 0.6 MeV ,

κ2 = 0.0153± 0.0018 ,

κ4 = 0.00032± 0.00067 . (6)

We show the corresponding transition line in the left panel of Fig. 2. We
introduce a width parameter σ, which corresponds to the half width of the
transition 〈

ψ̄ψ
〉

(Tc ± σ/2) =
〈
ψ̄ψ
〉
c
±∆

〈
ψ̄ψ
〉
/2 , (7)

with
〈
ψ̄ψ
〉
c

= 0.285 and ∆
〈
ψ̄ψ
〉

= 0.14. We show σ in the right panel
of Fig. 2. It turns out that the half width is consistent with a constant

Fig. 2. (Color online) Left: Top — Transition line extrapolated from lattice sim-
ulations at imaginary chemical potential (gray/green band) compared with an ex-
trapolation using the formula in Eq. (1) up to κ4 (light gray/red band) or up to
κ2 (dark gray/blue band). Bottom — Our crossover transition line compared to
a prediction from truncated Dyson–Schwinger equations [36] and some estimates
of the chemical freezeout parameters in heavy-ion collisions [37–41]. Right: Half
width of the transition. In the inset we show a plot of the χ(

〈
ψ̄ψ
〉
) peak, where

the shaded region corresponds to
〈
ψ̄ψ
〉
c
± ∆

〈
ψ̄ψ
〉
/2. Both are extrapolated to

real µB .
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for µB ≈ 300 MeV. Since the width is supposed to become narrow when a
critical point is approached, we conclude that our results do not exhibit any
sign of criticality in the explored µB range.

3. Cross-correlators of conserved charges

Given the ongoing measurements of correlators between different parti-
cles by the STAR Collaboration [42], we want to build a bridge between
the correlators of conserved charges from lattice QCD and the experimental
measurements of correlations and fluctuations of hadronic species, in par-
ticular for the correlator of baryon number and strangeness. The Hadron
Resonance Gas (HRG) model is used for this purpose, as it allows us to
isolate correlations between single particles and connect them to correlators
of conserved charges.

Fluctuations of conserved charges are expressed as derivatives of the
grand partition function with respect to the different chemical potentials.
In the HRG model, they can be written as

χBQSijk (T, µ̂B, µ̂Q, µ̂S)=
∂i+j+k

(
p/T 4

)
∂µ̂iB∂µ̂

j
Q∂µ̂

k
S

=
∑
R

Bi
RQ

j
R S

k
R I

R
i+j+k(T, µ̂B, µ̂Q, µ̂S) ,

(8)
where µ̂i = µi/T , and IRi+j+k reads (note that it is completely symmetric in
all indices, hence i+ j + k = l)

IRl (T, µ̂B, µ̂Q, µ̂S) =
∂lpR/T

4

∂µ̂lR
, (9)

where µR = µBBR + µQQR + µSSR. We can replace the sum in Eq. (8) as
a sum over the stable states under strong interactions∑

R

Bl
RQ

m
RS

n
RI

R
p →

∑
i∈stable

∑
R

(PR→i)
pBl

iQ
m
i S

n
i I

R
p , (10)

where (PR→i)
p is the average number of particles i obtained from the decay

of particle R.
By writing the fluctuations in Eq. (8) in term of stable particles, we

can distinguish between particles which can be detected in experiment and
those which usually are not. In this work, we employ the hadronic list labeled
PDG2016+ in [27], with the list of decays described and first utilized in [43].
We will label the following species ‘measured’

π± , K± , p (p̄) , Λ
(
Λ̄
)
, Ξ−

(
Ξ̄+
)
, Ω−

(
Ω̄+
)
,

where we note that, since the decay Ω0 → Λ + γ has a branching ratio of
∼ 100%, what we indicate as Λ also contains the entire Ω0 contribution.
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In the left panel of Fig. 3, we show the lattice QCD results for the χBS11
correlator as a function of the temperature at µB = 0 at different finite spac-
ings, as well as its continuum extrapolation. In the right panel, we compare
this continuum extrapolation to the results from our HRG model analy-
sis, where we separate the contribution from measured and non-measured
hadronic species. We notice that the contributions roughly correspond to the
same amount. In Fig. 4, we show the breakdown of the main contributions
from measured particles to −χBS11 and χS2 at µB = 0.
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Fig. 3. (Color online) From Ref. [33]. Left: Continuum extrapolated results for
the correlator χBS11 as a function of the temperature at µB = 0 (gray/blue band).
The different datapoints correspond to results at finite lattice spacing. Right:
Lattice results compared to HRG model calculations (solid black line), with the
contribution from measured (dot-dashed blue line) and non-measured (dashed red
line) hadronic species.
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Fig. 4. From Ref. [33]. Contributions from ‘measured’ states to −χBS11 (left panel)
and χS2 (right panel), at µB = 0, as functions of the temperature.

To perform a comparison to experiment and to lattice QCD results,
exploiting the information in Fig. 4, we construct the following proxy for
the ratio −χBS11 /χ

S
2 :

C̃Λ,ΛKBS,SS = σ2Λ/
(
σ2K + σ2Λ

)
, (11)
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which is shown in the left panel of Fig. 5 as a dotted blue line, together
with the full HRG result (solid black line). This quantity reproduces the
full result for all temperatures around the QCD transition. The right panel
shows a comparison of this proxy, calculated along parametrized freeze-out
lines with T (µB = 0) = 145, 165 MeV, to preliminary STAR data. We notice
that the data prefer the higher freeze-out temperature. This is in agreement
with previous findings [39, 44–47].
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Fig. 5. (Color online) From Ref. [33]. Left: Comparison of different proxies (the
dotted blue line shows C̃Λ,ΛKBS,SS) and the total result (solid black line) for −χBS11 /χ

S
2

at µB = 0. Right: Comparison of our proxy with the kinematic cuts from [48, 49],
along parametrized freeze-out lines with T (µB = 0) = 145, 165 MeV (dotted black
and dashed blue). The light blue dots show STAR preliminary data.

4. Conclusions

We presented our most recent results on the transition line of QCD and
on correlators of conserved charges. In particular, we focused on the cor-
relator between baryon number and strangeness. We found a proxy which
reproduces the lattice QCD results at all explored temperatures and chemi-
cal potentials. We then compared the HRG model predictions for the proxy
to the corresponding experimental results and found that they can be re-
produced with a freeze-out temperature which is in agreement with previous
results for strange fluctuations.
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