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After combined character and hopping expansions and integration over
the spatial gauge links, lattice QCD reduces to a three-dimensional SU(3)
Polyakov loop model with complicated interactions. A simple truncation of
the effective theory is valid for heavy quarks on reasonably fine lattices and
can be solved by linked cluster expansion in its effective couplings. This was
used ealier to demonstrate the onset transition to baryon matter in the cold
and dense regime. Repeating these studies for general N, one finds that for
large N, the onset transition becomes first-order, and the pressure scales as
p ~ N, through three consecutive orders in the hoppoing expansion. These
features are consistent with the formal definition of quarkyonic matter given
in the literature. We discuss the implications for N, = 3 and physical QCD.
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1. Introduction

The physics of cold and dense baryon matter is of ever increasing interest
in view of growing observational data from neutron stars and their mergers,
as well as heavy-ion collisions at low energies and large densities. To date,
the corresponding parametric regime of QCD is inaccessible to lattice simula-
tions due to a severe sign problem for baryo-chemical potential g # 0. The
low-density regime pp < 37T, where the crossover from a hadron resonance
gas to a quark—gluon plasma takes place, can be controlled by a number of
methods, and no sign of criticality is observed [1, 2|. Here, we address the
cold and dense regime of the nuclear liquid gas transition, corresponding
to large pup/T, within an effective lattice theory derived analytically from
full QCD. While this theory is only valid for heavy quarks, the qualitative
features of the nuclear liquid gas transition can be reproduced directly from
QCD in this framework. In particular, we discuss here the possibility for
quarkyonic matter as conjectured in [3].
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2. An effective lattice theory for heavy quarks

We start with lattice QCD in the Wilson fomulation at finite tempera-
ture, i.e., with compact Euclidean time dimension of N; slices, T'= 1/(aN-),
and (anti-)periodic boundary conditions for (fermions) bosons. An effective
theory in terms of temporal links only is obtained after integrating over the
quark fields and gauge links in spatial directions in the partition function

Z = /DUODUi det Q e %IVl = /DUO e~ Serr[Uo] — /DWeSeff[W]. (1)

The effective action then depends on temporal Wilson lines W (x) closing
through the periodic boundary, or Polyakov loops L(x) = TrWW(x), and is
in principle unique and exact. In practice, we first expand the QCD action
in powers of the coefficient of the fundamental character u and the hopping
parameter

B, B 1
A A S
=g Tae T <l AT o T8

(2)
The dependence of u on the lattice gauge coupling 8 = 2N./g? is known
to arbitrary precision, and v is always smaller than one for finite S-values.
Since the hopping expansion is in inverse quark mass, the effective theory
to low orders is valid for heavy quarks only. Both expansions result in
convergent series within a finite radius of convergence. Truncating these
at some finite order, the integration over the spatial gauge links can be
performed analytically to provide a closed expression for the effective theory.
The integration over spatial links causes long-range interactions of Polyakov
loops at all distances and to all powers, which must be taken into account
according to the power counting of the expansion parameters. The first
terms of the partition function, with nearest neighbour interactions only,
then read [4, 5]

Z = /DW T [1+ AZaLi + LiLy)]
(z,y)

< [T [1+ hiLe + h2L% + B3] [1 4+ haLf + B3 Ly + B3]
xT

hy W, A
1—92hy [Mr——2t"2 gy D172
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7 T
x [ Tr MWy Tr hl_VVy . (3)
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The first line corresponds to the Yang—Mills part, the second line to the
static determinant, and the third line to the leading corrections from quark
hops representing pion exchange. The effective couplings are functions of
the original QCD parameters (for complete expressions beyond LO, see [5])

A = oM exp[Ny(dut + .. )],

hy = 2re™Nr (1. )=eT (14+..)), h=h(-p),

hy = K2N;/Ne(1+...) (4)
with am = —1In(2k) = amp/3 the leading-order constituent quark mass in
a baryon.

This effective theory has a mild sign problem only and can be simulated
with reweighting or complex Langevin methods [5, 6]. Moreover, it can be
treated by linked-cluster expansion methods known from statistical physics.
These have recently been tested to high order in an SU(3) spin model, allow-
ing a quantitative determination of the phase diagram with zero or non-zero
chemical potential [7]. Also in the present context, a linked cluster expansion
to the order of x8u® was successfully tested against numerical ones [8].

2.1. The deconfinement transition

The effective theory can now be used to map out the phase diagram of
QCD with heavy quarks. At u = 0 and infinite quark mass, a first-order
deconfinement transition is found at high temperature, corresponding to
the breaking of the Z(3) center symmetry. The phase transition weakens
with decreasing quark mass until it disappears at a critical point. This is
exactly what is also found in Monte Carlo simulations of full QCD [9, 10].
However, contrary to full QCD, the effective theory can also be applied to
finite chemical potential [8]. For heavy quarks, the first-order deconfinement
transition also weakens with chemical potential ending in a critical point,
whose location depends on the quark mass, Fig. 1. The same qualitative
behaviour is also found by continuum Polyakov loop model studies |11, 12].

2.2. The baryon onset transition

More difficult to address is the cold and dense region, since the sign
problem grows exponentially with p/T". Here, we switch to analytic methods.
It is instructive to first consider the strong coupling (5 = 0) limit with a
static quark determinant. In this case, the partition function can be solved
analytically. At low temperature, mesonic contributions are exponentially
suppressed by chemical potential and for Ny = 1, we have [6, 13|

Z(B=0)"20 2 with z9=1+4h% +nS. (5)
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Fig. 1. Left: Qualitative phase diagram for QCD with very heavy quarks. Right:
Deconfinement transition for Ny = 2, N, = 6 from the 3d effective theory [5].

Note that this corresponds to a free baryon gas with two species. With one
quark flavour only, there are no nucleons and the first prefactor indicates a
spin 3/2 quadruplet of A’s, whereas the second term is a spin 0 six-quark
state or di-baryon. The quark number density is now easily evaluated

T 9 1 4NhYe + 2N h e , 0 <m
V alu a3 1 + 4hivc + h%Nc T—0 2NC) 12 >m

(6)
At zero temperature this is a step function, which reflects the “silver blaze”
property of QCD, i.e. the fact that the baryon number stays zero for small
even though the partition function explicitly depends on it [14]. Once the
baryon chemical potential up = 3 is large enough to make a baryon (mp =
3m in the static strong coupling limit), a discontinuous phase transition to
a saturated baryon crystal takes place. Note that saturation density here
is 2N, quarks per flavour and lattice site, and reflects the Pauli principle.
This discretisation effect has to disappear in the continuum limit.

In the case of two flavours, the corresponding expression reads [6]

20 = (1 + 4R35 + hS) + (6h3 + 4h3) hy + (6ha + 10hy) h2 + (4 + 20h3
+4hG) by + (108G + 6hg) hyy + (4ha + 6hg) hy, + (14 4h3 + hg) hY,,  (7)

where we have separate h; couplings for the u- and d-quarks. Now, we
identify also the spin 1/2 nucleons and several other baryonic multi-quark
states with their correct spin degeneracy. Remarkably, the spin-flavour-
structure of the QCD baryons is obtained in this simple limit!

When corrections are added, the step function gets smoothed, as shown
in Fig. 2 (left) in a calculation through orders x®u® for various lattice spac-
ings. As expected, the saturation level moves towards infinity as the con-
tinuum is approached. Note, however, that this makes continuum extrap-
olations at growing chemical potential formidably difficult to control. An
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important observation is that the onset transition happens already before
up = mp. This is also expected for the physical nuclear liquid gas transition
and is partly due to temperature and partly to an attractive interaction be-
tween baryons. The binding energy per baryon in units of the baryon mass
can at low temperatures be extracted from (here Ny =1 [6])

2
e—npmp 4 1 <6h§+3h?> 24 ()

€E=—— = ——
ngmp 3a3np 20

In the static limit this vanishes, for dynamical quarks, it slowly grows with
decreasing quark mass. This is also the reason why the onset in Fig. 2 (left)
is a smooth crossover: T, ~ € is exponentially small for heavy quarks. For
light quarks (larger k), the expansion does not converge, but simulations
clearly show a two-peak structure of baryon number at low temperatures,
signalling a first-order onset transition, Fig. 2 (right). Thus, all qualitative
features of the nuclear liquid gas transition are contained in the effective
theory and thus have been identified from QCD directly.
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Fig.2. Left: Baryon number density for heavy quarks, various lattice spacings [8].
Right: Baryon number distribution at onset for low 7" and light quarks: first-order
transition.

3. QCD at large N,

Considering QCD with a large number of colours has a long history, with
the initial hope to develop an expansion scheme that also works for hadronic
physics. Here, we only summarise the most essential features established in
the early works [15, 16]. The large N, limit of SU(N.)-QCD is defined by
(9)

N. — oo with g2NC = const.
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In this case, the theory has the following properties:

— Quark loops in Feynman diagrams are suppressed by N.!;
— Non-planar Feynman diagrams are suppressed by N;2;

— Meson masses are ~ Aqcp;

. : . . —-1/2
— Mesons are free; the leading corrections are cubic interactions ~ N, /
and quartic interactions ~ N1

— Baryons consist of N. quarks, baryon masses are ~ N.Aqcp;

— Baryon interactions are ~ N.

Using this, the authors of 3] conjectured the phase diagram of QCD at
large N, to look like Fig. 3 (left). At large N, the influence of fermions
on the deconfinement transition is suppressed, which therefore extends hor-
izontally as a first-order transition into the chemical potential plane. In the
deconfined phase, perturbation theory is valid and the pressure scales as
p ~ N2. At low T and p, the hadron resonance gas is valid, the pressure
is exponentially suppressed by hadron masses and scales as p ~ NO. At
large p and low T, perturbation theory predicts quark matter scaling like
p ~ N¢. The conjecture of [3] is that this regime reaches all the way down
to u ~ mg, where one expects baryon matter. The differences in scaling
behaviour require non-analytic phase transitions between the three different
regimes. Since matter in the cold and dense regime has both baryonic (to-
wards its left boundary) and quark-like (at asymptotic densities) features, it
was termed “quarkyonic”. A simple picture arises at low temperatures in mo-
mentum space, where fermions form a Fermi sphere, which constitutes the
ground state. Excitations of the order of Aqcp relative to the Fermi sphere
are then expected to be baryonic, whereas excitations > Aqcp should be

Deconfined

p~N?

Yevonic
Hadronic Q”‘n}‘-\ onic Hadronic
1 \ \
1 | \ \

1z fip

Fig.3. (Colour on-line) Phase diagram in the limit of large N, (left) and possible
consequences for N, = 3 (right) according to [3]. The black/blue line indicates the
chiral transition.
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quark-like in nature. Thus, in momentum space, a shell structure is ex-
pected [3], with an inner quark sphere surrounded by a baryonic shell of
thickness ~ Agcp. The size of the entire and inner sphere is thus governed
by p. A qualitative discussion of the (T, i, N¢) phase diagram is also given
in [17], and there are speculations about quarkyonic physics in heavy-ion
collisions [18] and neutron stars [19]. For an introduction, see [20].

8.1. The liquid gas transition for general N,

Within our analytic approach to lattice QCD, we can now employ the
effective lattice theory to study the behaviour of the baryon onset transition
as a function of increasing N, [21|. It should be stressed that we are not
doing any expansion in N !, so our results apply to any N, small and large.
On the other hand, we do an expansion in the inverse gauge coupling and
quark mass, whose implications we will discuss below.

We begin by looking at the changes to the partition function in the static
strong coupling limit, Eq. (5), which now reads

20 =14 (Ne 4 1R + p3Ne (10)

The modified prefactor indicates a different spin degeneracy of the baryon,
which naturally depends on the number of quarks that it is made of.
Computing corrections in the hopping expansion, we obtain the coeffi-
cients for the pressure and baryon number shown in Table I. Remarkably,
for hy > 1, i.e., to the right of the onset transition, the coefficients of all

TABLE 1

Large N, behaviour of the thermodynamic functions and the interaction energy
per baryon, order by order in the hopping expansion, on both sides of the onset
transition for Ny = 2.

0 2 ol
hi <1
4 1 31 N, 1 A777,2N, 3N, k* n787 2N,
a*p ~ —6NTNCh1° ~—4—8Nch1 ° ~ 2558 NZhi™e
3 1 A737 Ne N, n777.2Ne (9N +1)N, 2787 2N,
a’npg ~ s NG hy ~ =55 NJ hi ~ ST NE hi
1 737 Ne
€ 0 ~ _ZNChl
h1 >1
41n(h
a'p ~ %Nc ~ —12N, ~ 198N,
4 5
3 N (59N, —19)N, N,
@y ~d N T
€ 0 ~ —6
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three computed orders are proportional to IV, corresponding to part of the
definition of quarkyonic matter. For the LO coefficient, this is trivial and
given by the lattice saturation in terms of quark degrees of freedom. How-
ever, the next two terms do not contribute to lattice saturation, but to the
description of the physical baryon density which, right at the onset transi-
tion, is composed of baryons, not quarks. The fact that these coefficients
scale as N, is non-trivial and suggestive for this to be a feature to all orders.
Note also that the binding energy per baryon is N0 as expected [3, 16]. On
the other hand, for A; < 1, the contributions to the thermodynamic func-
tions go as powers of hi, which vanish exponentially with 7" — 0. Thus, the
silver blaze feature is amplified as N, increases, while for hy > 1, the baryon
density gets amplified with growing N.. This steepens the onset transition
with growing N, to ultimately always produce a first-order transition.
However, the results in the table were obtained in the strong coupling
limit 8 = 0 and hence do not yet correspond to the ‘t Hooft limit, Eq. (9),
for which g2 needs to be adjusted. Thus, including gauge corrections is
mandatory. Figure 4 shows the steepening of the onset transition and the
pressure with gauge corrections included. It is remarkable that the pressure
scaling with N, needs only a leading correction to describe the behaviour
almost down to N, = 3. Finally, if we are interested in continuum physics,
the ordering of limits matters, as already observed in [22]. The fact that
for large N. the baryon density jumps to the lattice saturation density, an
artefact of the discretisation indicates that we have to take the continuum
limit first and only then N, — oco. Unfortunately, this prohibits a demon-
stration of the large-N. behaviour in the continuum, because an exploding
number of orders in the expansions would be required to actually take the
limits. What is possible at present is to show that both qualitative features,
i.e. the steepening of the transition with N, and p ~ N, beyond onset, are
stable when the lattice is made gradually finer before increasing N, [21].

pup/miP =1, a=0.1fm

Ag = 4.50 5 4
ng/T® 10°p/(Nem™)
AN N.— 1.4
N — 1.2
3‘\23 N .
) N.=7 1.0 P
2N} 0.8 e
N? 0.6
k=01 N, =100
up/mi : : : : : : 1/N.
0.992 0996 1. 1.004 1.008 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 4. Left: Onset transition for different values of N.. Right: Pressure scaling as
p ~ Ne(1+const. N7t +...) [21].
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4. Conclusions

We have studied the onset transition to baryon matter for general num-
ber of colours N, with an effective lattice theory for heavy quarks, which is
derived from full lattice QCD by analytic character and hopping expansion
methods. The onset transition becomes more strongly first-order with in-
creasing N, which implies increasing T, for its endpoint as well, ¢f. Fig. 5
(left). Since the deconfinement transition is known to “straighten” with
growing N., we observe how the phase diagram of QCD with heavy quarks
gradually evolves towards the conjectured rectangular shape in the large-N,
limit, Fig. 3 (left). We also confirm the pressure beyond the onset transition
to scale as p ~ N, in that limit. If this finding generalises to all orders in the
hopping expansion, then it also holds for light quarks, and cold and dense
QCD is consistent with quarkyonic matter as formally defined in [3].

What are the consequences for physical QCD? For N, = 3, there is no
separate phase transition to quarkyonic matter as in Fig. 3 (right), that
role is played by the nuclear liquid gas transition, which terminates at T, ~
16 MeV. There is so far no lattice evidence for the other transition lines
either, which might be crossovers. Right after onset, there are then baryons
only, which is consistent with the shell picture of quakyonic matter and
similar to the finite temperature crossover region still being mostly hadronic
[23]. This is indicated by the shaded area in Fig. 5 (right). With increasing
density, one would then expect the inner sphere of quark matter to form,
allowing for a possibly smooth transition to predominantly quark matter at
large densities, similar to the smooth transition to quark—gluon plasma in
the temperature direction. A separate study with light quarks is needed to
see whether or not there is in addition a chiral transition.

2
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Fig.5. Left: Smooth change of the transition lines for heavy QCD with growing
N.. Right: The features of the physical QCD phase diagram seen on the lattice.
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