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Non-critical contributions are discussed in the context of fluctuations
of conserved charges, which are of particular importance for disentangling
critical signals originating from second order phase transitions. The ap-
proach is based on a model-independent construction of canonical parti-
tion function, i.e., by using measured mean multiplicities of baryons and
anti-baryons. The experimental measurements of the STAR and ALICE
collaborations are confronted with the presented model predictions. For
this purpose, in line with the experimental observations, different accep-
tances are introduced for baryons and anti-baryons. It is demonstrated
that nearly all measured experimental signals of net-proton cumulants, up
to order four, can be described by accounting for global baryon number
conservation. A dedicated Python package is developed in order to obtain
analytical expressions for cumulants of any order of net-baryon (net-proton)
distributions. Moreover, it is demonstrated that contributions due to lo-
cal baryon number conservation at the LHC energies are negligible, which
implies sensitivity of measured second order cumulants to early stages of
collisions.
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1. Introduction

Unraveling the phase structure of Quantum Chromodynamics (QCD) is
one of the goals of current experimental and theoretical studies of nuclear
interactions [1–3]. As QCD, the gauge field theory of strong interaction,
has specific features, asymptotic freedom and confinement, in the realm of
high temperature and/or density, the fundamental degrees of freedom of the
strong interactions come into play [1]. By colliding heavy ions at different
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energies, one hopes to heat and/or compress the matter to energy densi-
ties at which a transition from matter consisting of confined baryons and
mesons to a state of liberated quarks and gluons (deconfined phase) begins.
However, liberated quarks and gluons are not what one ultimately observes
in experiments. The subsequent expansion and cooling of the deconfined
phase leads to formations of hadrons, which fly outwards, and get registered
by the detectors. This process of hadronization plays a key role in under-
standing what detectors see. The headway is to establish a bridge between
the events which occur before the hadronization and the experimental out-
come. The situation is much similar to reconstruction of the cosmological
Big Bang from observables such as Hubble expansion, the cosmic microwave
background and the abundance of light atomic nuclei.

At finite quark masses, the chiral SU(2)L × SU(2)R symmetry is explic-
itly broken in the QCD vacuum. Moreover, it is well-established through
lattice QCD (LQCD) investigations [4] that chiral symmetry is restored in a
crossover transition at vanishing net-baryon density and a (pseudo-critical)
temperature of Tpc ' 156.5 MeV [5]. The latter is in agreement with the
chemical freeze-out temperature as extracted by comparing Hadron Reso-
nance Gas (HRG) model predictions [2] to the hadron multiplicities mea-
sured by ALICE. This agreement implies that strongly interacting matter,
created in collisions of Pb nuclei at the LHC energies, freezes out in close
vicinity of the chiral phase transition line. Hence, singularities stemming
from the proximity to genuine second order chiral phase transition, which
belongs to the O(4) universality class [6] in the limit of massless u and d
quarks, can be captured experimentally in high-energy nuclear collisions,
such as those performed at the LHC and top RHIC energies.

At present, systematic LQCD studies of the properties of QCD matter
are possible only at small net-baryon densities. Consequently, first-principle
results on the nature of the chiral transition at high baryon densities are not
yet available. However, studies of strongly interacting matter in effective
models of QCD suggest that, at sufficiently large baryon chemical poten-
tial µB, QCD matter exhibits a first order chiral phase transition [7–15].

The endpoint of such a first-order transition line in the (T, µB)-plane is
the conjectured chiral critical endpoint (CP) [7]. At such a CP, the system
would exhibit a 2nd order phase transition belonging to the Z(2) universality
class.

Phase transitions are usually studied by looking to the response of the
system to external perturbations. For example, the liquid gas phase transi-
tion can be probed by the response of the volume to a change in pressure,
which is encoded in the isothermal compressibility. In the Grand Canoni-
cal Ensemble (GCE) formulation of statistical mechanics the latter contains
fluctuations of liquid constituents from from one microstate to another one.



Establishing a Non-critical Baseline for Fluctuation Observables 355

Hence, the objective is to relate macroscopic parameters of the system, which
define its EoS, with its microscopic details encoded in fluctuations. In a sim-
ilar way, phase transitions in strongly interacting matter can be addressed
by investigating the response of the system to external perturbations via
measurements of fluctuations of conserved charges such as baryon number
or electric charge [16, 17].

Important research objectives are pursued by the ALICE Collaboration
at the LHC [18–20], the STAR Collaboration at RHIC [21], the NA61 Col-
laboration at the CERN SPS [22], and by the HADES Collaboration at the
GSI [23].

In order to draw firm conclusions about the structure of the QCD phase
diagram, further in-depth studies of all mechanisms leading to deviations
from the HRG baseline should be considered [24–30]. In the following, a
robust non-critical baseline is presented, which is relevant for the interpreta-
tion of experimental results on event-by-event fluctuations of the net-baryon
number in nuclear collisions.

2. Correlations induced by baryon number conservation

In a thermal system with an ideal gas EoS, composed of baryon/anti-
baryon species with baryon numbers +1 and −1, GCE partition function
yields the uncorrelated Poisson distributions for baryons and anti-baryons,
hence the net-baryon distribution has the following cumulants [27]1:

κn(Skellam) = 〈nB〉+ (−1)n 〈nB̄〉 , (1)

where 〈nB〉 and 〈nB̄〉 denote the first cumulants (mean numbers) of baryons
and anti-baryons, respectively. Equation (1) implies that ratios of even-to-
even and odd-to-odd cumulants of net-baryons are always unity, while the
ratios of odd-to-even cumulants depend on mean multiplicities

κ2n+1

κ2k
=
〈nB〉 − 〈nB̄〉
〈nB〉+ 〈nB̄〉

. (2)

Hitherto, the above conditions are used as a baseline for net-baryon fluc-
tuations. However, this can lead to misleading conclusions because, apart
from dynamical fluctuations induced by critical phenomena, deviations from
this baseline may be driven by event-by-event baryon number conservation.
In order to quantify such non-dynamical deviations from the GCE base-
line, the following canonical partition function for a system of baryons/anti-
baryons in a finite volume V and temperature T is considered [31–33]:

1 The probability distribution of the difference of two random variables each generated
from uncorrelated Poisson distributions is called the Skellam distribution.
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ZB(V, T ) =

∞∑
NB=0

∞∑
NB̄=0

(λB zB)NB

NB!

(λB̄ zB̄)NB̄

NB̄!
δ(NB −NB̄ −B)

=

2π∫
0

dφ

2π
e−iBφ exp

(
λB zB eiφ + λB̄ zB̄ e−iφ

)

=

(
λB zB
λB̄ zB̄

)B
2

IB

(
2 z
√
λB λB̄

)
, (3)

where IB denotes the modified Bessel function of the first kind and z =√
zBzB̄. The single particle partition functions for baryons zB and anti-

baryons zB̄ involve integrations over position and momentum space, and
are directly related to the mean number of baryons and anti-baryons in the
grand canonical ensemble 〈NB〉GC = eµB/T zB and 〈NB̄〉GC = e−µB/T zB̄. It
follows that z =

√
〈NB〉GC 〈NB̄〉GC.

The auxiliary parameters λB,B̄ are introduced for the calculation of the
mean number of baryons and anti-baryons. In the final results, they are set
equal to unity. The resulting mean multiplicities in the canonical ensemble
are2

〈NB〉 = λB
∂ lnZB
∂λB

∣∣∣∣
λB ,λB̄=1

= z
IB−1(2 z)

IB(2 z)
, (4)

〈NB̄〉 = λB̄
∂ lnZB
∂λB̄

∣∣∣∣
λB ,λB̄=1

= z
IB+1(2 z)

IB(2 z)
. (5)

From Eq. (3) it follows that, for a given value of net-baryon number B of
the full system, the underlying normalized canonical probability distribution
for NB̄ is given by

PB(NB̄) =
1

IB(2z)

zBz2NB̄

(NB̄ +B)!NB̄!
. (6)

Equation (6) is used to generate the number of anti-baryons NB̄ and
baryons NB = NB̄ +B in full phase space.

The local baryon number conservation is introduced by exploiting an
additional parameter ∆ycorr, which regulates the strength of the correlation
between baryons and anti-baryons in the rapidity space [27]

|yB̄ − yB| <
∆ycorr

2
, (7)

2 Expectation values without a subscript, 〈. . .〉, refer to the canonical ensemble (3).



Establishing a Non-critical Baseline for Fluctuation Observables 357

where, yB and yB̄ stand for baryon and anti-baryon rapidity values gener-
ated from experimentally measured dn/dy distributions. In this picture, the
global baryon number conservation corresponds to ∆ycorr = 2× ybeam.

3. Experimental results and model predictions

Figure 1 presents the energy dependence of the normalized cumulants.
The Canonical Ensemble (CE) baselines, both analytical calculations (red
squares or solid red lines) and generated values (solid blue circles) are com-
puted at four different collision energies of

√
sNN = 8.8, 17.3, 27 and

62.4 GeV. For each collision energy, using experimentally measured/estima-
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Fig. 1. (Colour on-line) Cumulant ratios of the net-proton distributions. The
dashed/red line shows the HRG value [2]. The blue circles show the results of
the simulation, while the red squares and solid lines indicate those of the analyt-
ical calculations. In both, baryon number conservation is accounted for. They
should be compared to the black stars representing experimental results of the
STAR Collaboration [21]. Open blue circles include the additional contributions
from reaction volume fluctuations [24]. Also shown as the grey/cyan band in the
lower right figure is the result from LQCD [34].
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ted number of baryons in 4π, Eq. (4) is solved for single particle parti-
tion z [3]3. Next, the finite acceptance is introduced by using the mea-
sured/predicted rapidity distributions of baryons/anti-baryons from the
NA49 [35] and BRAHMS [36] experiments. In addition, the pT coverage and
other contributions, such as those originating from weakly decaying hadrons
etc., are introduced by using mean multiplicities of protons and anti-protons
as measured by the STAR experiment. Thus all presented model results are
computed within the STAR acceptance for cumulant analyses, delimited as
|y| < 0.5 and 0.4 < pT < 2 GeV/c, independent of collision energy. The
corresponding analytical formulas given in Ref. [3] can also be obtained by
using the dedicated Python package [37]. For the generated values, the prob-
ability function is used as defined in Eq. (6). Also shown for reference is the
HRG line denoting the baseline for independent Poissonian fluctuations of
protons and anti-protons, cf. Eq. (1). For κ1/κ2 and κ3/κ2, this corresponds
to 〈np − np̄〉/〈np + np̄〉, while for the ratio of even cumulants such as κ4/κ2

and κ6/κ2, it is equal to unity. In general, there is good agreement over the
full energy range covered experimentally between the CE baseline (baryon
number conservation) and the STAR data. For κ1/κ2, the effect of baryon
number conservation is small in the energy range shown here and the canon-
ical baselines are in excellent agreement with the STAR data. Within the
experimental uncertainties, the corresponding HRG baseline for the ratio
κ1/κ2 is also in marginal agreement with the STAR data. For all cumu-
lant ratios the STAR data, as the canonical baseline, approach the HRG
limit for higher energies. This behaviour is a consequence of the decreas-
ing acceptances for protons and anti-protons, see the text above. Indeed, a
fixed acceptance in rapidity, independent of the collision energy, effectively
leads to a decreasing fraction of accepted protons with increasing energy,
thereby reducing the effect of baryon number conservation. For the κ3/κ2

ratio, the CE baseline is systematically below the corresponding HRG refer-
ence. Moreover, this amount of suppression is consistent with the measured
STAR data. The κ4/κ2 results from STAR exhibit statistical fluctuations
around the CE baseline. The Kolmogorov–Smirnov test shows that there is
no statistically significant deviation between the CE baseline and the STAR
data [3]. In conclusion, within the uncertainties, the energy dependence
of cumulants up to order four, measured by the STAR experiment, can be
explained with the global baryon number conservation. The situation is dif-
ferent for the κ6/κ2 ratio, the CE baseline indicates significant suppression,
with respect to unity (HRG line), and even becomes negative at low ener-
gies. While at

√
sNN = 54.4 GeV, the STAR data point has positive value

and is consistent with the HRG and CE baselines, at 200 GeV the data is

3 At
√
sNN = 27 GeV, model calculations are performed differently, see for details

Ref. [3].
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significantly below the CE baseline. Moreover, this observation by STAR is
not consistent with the presented LQCD results, where the κ6/κ2 values, at
both collision energies, remain negative [34].

In Fig. 2, the acceptance dependence of the normalized second cumulants
of net-protons R1 = κ2/〈np+np̄〉, measured by the ALICE Collaboration in
Pb–Pb collisions at

√
sNN = 2.76 TeV, are presented [18, 20]. The analysis is

performed with the Indentity Method [38–42] in eight pseudorapidity regions
ranging from −0.1 < η < 0.1 up to −0.8 < η < 0.8. The data exhibits linear
approach to unity with decreasing acceptance, consistent with predictions
based on the assumption of global baryon number conservation, depicted as
the black/pink band [3, 24]. When imposing a finite acceptance cut, the
subtle correlations between baryons and anti-baryons, induced by the global
baryon number conservation law, weakens. In the limit of small acceptance,
these correlations become not visible anymore in the measured second order
cumulants. However, the amount of correlation inside finite acceptance de-
pends also on the correlation length ∆ycorr in the rapidity space (cf. Eq. (7)).
This local baryon number conservation [27] would lead to further suppression
of the measured R1 values. Close inspection of Fig. 2, however, indicates
that within experimental uncertainties, the ALICE data are best described
with the large correlation length in the rapidity space, i.e., the observed
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Fig. 2. (Colour on-line) Pseudorapidity dependence of the normalized second cu-
mulants of net-protons R1 = κ2/〈np + np̄〉. Global baryon number conservation is
depicted as the black/pink band [3, 24]. The dashed lines represent the predictions
from the model with local baryon number conservation [27]. The blue dash-dotted
line, represents the prediction using the HIJING generator.
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correlations, to a large extent, are induced by global baryon number con-
servation. The HIJING results [43], on the other hand, underestimate the
experimental data and correspond to correlation length of ∆ycorr = 2. The
large correlation length observed in the data implies that the normalized
second cumulant R1 is determined by collisions in the very early phase of
the Pb–Pb interaction [44].

4. Conclusions

The non-critical canonical baseline is presented for net-baryon cumu-
lants in relativistic nuclear collisions. The net-baryon cumulants are evalu-
ated analytically in the framework of the canonical formulation of statistical
mechanics, in which the single partition function is computed by using mea-
sured/estimated mean numbers of baryons/anti-baryons in full phase space.
In line with the experimental situation, different acceptances for baryons and
anti-baryons are introduced. The results demonstrate that, overall, the ex-
perimental data follow the non-critical baseline predictions well without sta-
tistically significant differences even at the lowest energy and up to cumulant
order four. Moreover, a dedicated software package with a graphical user
interface is developed which allows for symbolic derivations of net-baryon
cumulants of any order. The ALICE data strongly indicate long-range cor-
relations, implying sensitivity to early stages of collisions. The presented
framework can be used in the next generation of experiments at RHIC and
the LHC as well as at future facilities such as NICA and GSI/FAIR.
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Peter Braun-Munzinger, Bengt Friman, Krzysztof Redlich and Johanna
Stachel. This work is part of and supported by the DFG Collaborative
Research Centre “SFB 1225 (ISOQUANT)”.
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