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We present lattice QCD calculations of higher order cumulants of elec-
tric charge distributions for small baryon chemical potentials µB by using
up to NNNLO Taylor expansions. Ratios of these cumulants are evaluated
on the pseudo-critical line, Tpc(µB), of the chiral transition and compared
to corresponding measurements in heavy-ion collision experiments by the
STAR and PHENIX collaborations. We demonstrate that these compar-
isons give strong constraints on freeze-out parameters. Furthermore, we
use strangeness fluctuation observables to compute the ratio µS/µB on the
crossover line and compare it to µS/µB at freeze-out stemming from fits to
strange-baryon yields measured by the STAR Collaboration.
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1. Introduction

Uncovering the phase structure of QCD poses a long-standing, open
challenge in heavy-ion research. Large efforts — in the form of relativis-
tic heavy-ion collision experiments — are made to find signs of a critical
point proposed by many model calculations. This point would provide an
important landmark in the largely unknown phase diagram of QCD and sig-
nals itself, for instance, through divergences in conserved charge fluctuations
that couple to the order parameter. Remnants of this divergence might be
seen in measurements of higher order cumulants of conserved charge dis-
tributions in heavy-ion collisions if freeze-out occurs in the vicinity of the
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critical point. Baryon number and strangeness fluctuations are studied in
heavy-ion collision experiments through the measurement of event-by-event
fluctuations of proxy particle species, such as proton or kaon numbers, re-
spectively. Electric charge fluctuations, on the other hand, can be measured
without resorting to proxies, making them particularly attractive for com-
parisons with lattice QCD calculations. Here, we want to provide thermal
QCD baselines for higher order cumulants of electric charge fluctuations
via state-of-the-art lattice QCD calculations and contrast them with results
from the STAR and PHENIX experiments. Furthermore, we will also use
strangeness fluctuation observables to construct µS/µB on the crossover line.

2. Setup

In previous studies [1], we presented calculations of higher order cumu-
lants of net-baryon number fluctuations based on a high statistics data set
of (2 + 1)-flavor HISQ gauge field configurations with physical light- and
strange-quark masses. We use degenerate light-quark masses and a light-
to-strange-quark mass ratio ml/ms = 1/27. Here, we add to this analysis
the corresponding higher order cumulants of electric charge and strangeness
fluctuations. By computing up to eighth order generalized susceptibilities

χBQSijk (T, ~µ ) =
1

V T 3

∂i+j+k lnZ(T, ~µ )

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

with µ̂X =
µX
T

, (1)

we are able to construct Taylor series coefficients χ̃X,kn (T ) for nth order
strangeness and electric charge cumulants

χXn (T, µB) =

kmax∑
k=0

χ̃X,kn (T )µ̂kB with X = Q,S . (2)

In order to match the conditions present in heavy-ion collisions, we con-
strain the Taylor series such that the ratio of charge densitynQ to baryon
densitynB is nQ/nB = 0.4, and the strangeness density is nS = 0. This is
achieved by expanding electric charge and strangeness chemical potentials
in µB with coefficients qi and si chosen such that nQ/nB = 0.4, ns = 0 hold
at each order

µ̂Q(T, µB) =
∑
i

q2i+1(T )µ̂2i+1
B ,

µ̂S(T, µB) =
∑
i

s2i+1(T )µ̂2i+1
B . (3)
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Explicit formulas for qj and sj for j ≤ 5 can be found in Appendix B of [2].
A full list of the expressions for χ̃X,kn will be given in an upcoming publica-
tion. Finally, we form cumulant ratios

RXnm(T, µB) =
χXn (T, µB)

χXm(T, µB)
=

∑kmax
k=0 χ̃

X,k
n (T )µ̂kB∑lmax

l=0 χ̃
X,l
m (T )µ̂lB

(4)

in order to cancel the volume factor in (1) that is unknown in heavy-ion
collision experiments. In this work, we will focus on the mean-to-variance
ratio RX12 = MX

σX
, the skewness ratio RX31 =

SXσ
3
X

MX
, and the kurtosis ratio

RX42 = κXσ
2
X . We evaluate (4) for nine temperatures ranging from 135 MeV

to 175 MeV and normalized chemical potentials µ̂B ranging from 0 to 2 in
steps of 0.01. This produces nine slices in the (T, µ̂B)-plane that trace out
the RXnm(T, µ̂B) surface. An example for this is shown in Fig. 1 for the
case of RQ12 for Nt = 8 lattices. The data for the different lattice sizes is
then jointly fitted via low-order polynomial Ansätze to obtain continuum
extrapolations. The details of the fitting procedure will be described in
a forthcoming publication.

 130
 140

 150
 160

 170
 180 0

 0.2
 0.4

 0.6
 0.8

 1
 1.2

 1.4
 1.6

 1.8
 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Nt=8

T [MeV]

µ/T

RQ
12

Fig. 1. RQ
12 for Nt = 8 in the (T, µ̂B)-plane.

3. Electric charge fluctuations on the crossover line

The mean-to-variance ratio RQ12 =
MQ

σ2
Q
, shown across the (T, µ̂B)-plane

in Fig. 1, has been calculated to NNNLO in µB. Apart from a small area in
the low-T and high-µ̂B region, it shows nearly perfect linear behavior in µ̂B
direction with very small variation along the T direction. This qualifies it to
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be used as a baryometer when comparing this quantity with experimental
results. In Fig. 2, we show RQ12 for the three different lattices sizes at tem-
peratures close to Tpc,0 as well as its continuum extrapolation evaluated on
the crossover line

Tpc(µB) = Tpc,0

(
1− κB,f2

(
µB
Tpc,0

)2
)

with Tpc,0 = 156.5± 1.5 MeV and κB,f2 = 0.012± 0.004 [3]. This figure also
contains the mean-to-variance ratios measured by STAR at different beam
energies depicted as horizontal lines. The intersections of the experimentally
determined values with the lattice result on the crossover line are highlighted
with dashed vertical lines. These marks provide a mapping between beam
energies and freeze-out chemical potentials if that freeze-out happens on the
crossover line. The numerical values extracted from this comparison are
listed in Table I.
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Fig. 2. RQ
12 for different Nt and continuum extrapolation along Tpc(µB). Horizontal

lines show results from STAR [4] at different beam energies.

TABLE I

Chemical potentials extracted from comparing results from STAR [4] with lattice
QCD.

√
sNN [GeV] µB,f [MeV]

200 19.4(1)
62.4 58(1)
39 92(2)
27 131(3)
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We also calculated the skewness ratio RQ31(T, µB)=
SQσ

3
Q

MQ
to NNLO in µB.

As seen in Fig. 3, the roles of T and µB are reversed when compared to RQ12.
The skewness ratio shows a strong variation with temperature but only a
mild dependence on chemical potential. In T direction, RQ31 possesses a (mir-
rored) sigmoidal shape and decreases with increasing temperature, while in
µB direction, RQ31 decreases only mildly with increasing µB. R

Q
31 functions

therefore as a thermometer when comparing lattice results with measure-
ments from heavy-ion collisions. By evaluating the continuum estimate on
the crossover line, the two effects cancel such that RQ31(Tpc(µB), µB) remains
almost constant when varying µB. We find RQ31(Tpc(µB), µB) = 1.07(9)

for µB < 150 MeV. The current continuum estimate of RQ31, based on our
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Fig. 3. Left: RQ
31(T, µB = 0) for different lattices sizes. Right: µB dependence of

RQ
31 for Nt = 8, 12 lattices.

Nt = 8 and Nt = 12 data, evaluated on the crossover line is shown as
a black/red curve in Fig. 4 together with the skewness ratio measured by
the PHENIX experiment [5] in a pseudorapidity range of |η| ≤ 0.35 and
27 MeV ≤ √sNN ≤ 200 MeV depicted as blue data points. To plot the
PHENIX data for RQ31, we use the µB values given in Table I. Figure 4
shows that the PHENIX results are consistent with lattice QCD calcula-
tions on the crossover line. The kurtosis ratio RQ42 = κQσ

2
Q has also been

calculated to NNLO in µB. Its behavior in the (T, µB)-plane is very similar
to RQ31, albeit with a different magnitude. The results are shown in Fig. 5.
The error of RQ42 is noticeably smaller than that of the skewness ratio since
it does not contain the noisy baryon–electric charge correlations that plague
RQ31. We estimate RQ42(Tpc) = 0.73(5) for µB < 150 MeV. Unfortunately,
measurements of the kurtosis ratio in heavy-ion collision experiments come
with large uncertainties such that a meaningful comparison cannot be made
at present.
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4. Strangeness fluctuations

While mean-to-variance, skewness and kurtosis ratios of strangeness fluc-
tuations are also accessible via lattice QCD following the discussion pre-
sented in the previous section, we want to explore here a different applica-
tion of strangeness observables that provides a helpful consistency check for
estimated freeze-out parameters. Let us recall that the strangeness neutral-
ity constraint fully determines the strangeness chemical potential µS(T, µB)
as seen in (3). Rewriting this equation to obtain µS/µB gives

µS
µB

= s1(T ) + s3(T )
(µB
T

)2
+O

((µB
T

)4)
. (5)

This ratio is almost exclusively determined by s1(T ) ≈ −χBS
11

χS
2
. At the

pseudo-critical temperature Tpc(µB = 0), we find s1(Tpc,0) = 0.251(6). This
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is in agreement with a lower limit −χBS
11

χS
2

> 0.193 ± 0.0127 calculated in
[6] based on data from the ALICE experiment. Already the NLO coeffi-
cient s3 is smaller than s1 by an order of magnitude, as shown in Fig. 6.
µS/µB is also sensitive to the strangeness content in hadron resonance gas
models. The PDG-HRG, which contains the hadron states listed in the
particle data booklet, shows a clear deviation from lattice QCD. This devi-
ation shrinks if the QM-HRG, which contains additional, not yet observed
hadronic states predicted by the quark model, is used instead. In a non-
interacting hadron resonance gas, µS/µB enters also in the ratio of anti-
strange-baryon-to-strange-baryon yields B̄/B given by

B̄

B

(√
s
)

= exp

(
−µB
T

(
2− 2|S|µS

µB

))
. (6)

Assuming that HRG relations provide a good approximation for particle
yields generated at the time of freeze out, we may fit the experimentally
measured yield ratios for different particle species in |S| via (6). The ratio
µS/µB at T = Tf can then be extracted from such a fit. We performed this
fit on the Λ, Ξ and Ω yield data published by STAR in [7] and [8], and
compare the result with µS/µB from lattice QCD evaluated on the pseudo-
critical line in Fig. 7. Apart from the data point at

√
sNN = 200 GeV,

the strangeness-to-baryon chemical potential ratio at freeze-out, shown as
gray/red points, agrees very well with the lattice QCD result on the pseudo-
critical line.
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5. Summary

We presented NNNLO calculations of the mean-to-variance ratio of elec-
tric charge fluctuations obtained from state-of-the-art lattice QCD calcula-
tions and demonstrated how RQ12 can be used to extract freeze-out chemi-
cal potentials by comparing to measurements of this ratio by STAR. Fur-
thermore, we estimated the skewness ratio RQ31 to NNLO in µB and found
RQ31(Tpc(µB)) = 1.07(9) for µB < 150 MeV. This is in agreement with the
skewness ratio measured by PHENIX for beam energies 27 MeV ≤ √sNN ≤
200 MeV. For the kurtosis ratio RQ42, we found RQ42(Tpc) = 0.73(5) but
large uncertainties in the measurement of the kurtosis ratio in experiments
prevent comparisons at this time. Lastly, we used strangeness fluctuation
observables to construct the ratio µS/µB on the pseudo-critical line and
compared it to µS/µB at freeze-out determined by fitting strange-hadron
yields measured by STAR. Again, we found the results at freeze-out to be
consistent with lattice QCD results on the pseudo-critical line.
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