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We study the signs of criticality in conserved charge fluctuations and
related observables of the finite temperature QCD at vanishing chemical
potential, as we approach the chiral limit of two light quarks. Our calcula-
tions have been performed on gauge ensembles generated using the Highly
Improved Staggered Quark (HISQ) fermion action, with pion masses rang-
ing from 140 MeV to 55 MeV.
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1. Introduction

Understanding of the phase diagram of QCD in the plane of temperature
and various chemical potentials is one of the primary goals of lattice QCD
calculations and the heavy-ion collision experiments at RHIC and the LHC.
The temperature variation at zero chemical potential is being explored at
the LHC and studied extensively using lattice techniques due to the absence
of the infamous sign problem. At physical quark masses, there exists a chiral
crossover at a temperature Tpc around 157 MeV [1, 2]. A schematic phase
diagram of QCD with an additional axis for degenerate light (up and down)
quark masses is shown in Fig. 1 [3]. In the figure, the dotted lines along
the horizontal and vertical axes correspond to the plane of physical quark
masses and the dashed line is the chiral crossover line which ends at a critical
end point Tcep, which is being actively pursued in experiments.

The chiral limit, however, is not accessible to experiments and can only
be studied via theoretical techniques. The spontaneous symmetry breaking
of the exact SU(2) × SU(2) symmetry in the chiral limit of two light quarks
is expected to be a phase transition belonging to the universality class of 3d
O(4) spin model [4]. There exists an alternative scenario where the chiral
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Fig. 1. Schematic phase diagram of QCD in the space of temperature T , baryon
chemical potential µB and light-quark masses mu,d [3].

crossover turns into a first order transition as we move towards the chiral
limit, through a Z(2) critical point at an intermediate light-quark mass value
[4, 5]. The order and nature of the chiral phase transition is still not clear
beyond doubt. Recently, the phase transition temperature Tc was found
to be 132+3

−6 MeV in Ref. [6]. Recent works have shown evidences which
imply that the O(4) scenario is favored [6–9]. In this work, we thus consider
only the O(4) universality class and try to understand the imprint of this
criticality on thermodynamic observables, in particular on conserved charge
fluctuations. The importance of these effects in the cumulants with regard
to experiments has been discussed in Ref. [10].

The plan of these proceedings is as follows. After the brief introduction,
Sec. 2 discusses the theoretical framework of studying universal critical phe-
nomena and introduces the observables we are interested in. Our numerical
setup is briefly summarized in Sec. 3 followed by our results in Sec. 4. We
conclude and present our future directions in Sec. 5.

2. Critical behavior in the chiral limit

According to Wilson’s renormalization group (RG) theory, the effective
Hamiltonian of a theory in the space of all possible couplings consists of
“energy-like” terms which respect the symmetry and “magnetic-like” terms
which break the symmetry. In QCD, the temperature T and chemical po-
tentials µX for different conserved charges X = baryon number B, electric
charge Q, strangeness S, . . . would thus be energy-like couplings with respect
to the chiral phase transition, whereas the light-quark massml ≡ mu,d would
be the magnetic-like coupling.

In the vicinity of a phase transition, the imprint of the criticality in ther-
modynamic quantities can be expressed as singular or non-analytic universal
contributions. The starting point of the discussion is writing down the log-
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arithm of the partition function i.e. the free energy density or the pressure,
close to a phase transition using generalized scaling laws [11]

1

T 4
f(T, ~µ,ml) =

1

V T 3
lnZ(T, ~µ,ml) = h(2−α)/βδff(z) + freg(T, ~µ,ml) , (1)

where V is the system volume and freg denotes the regular non-critical
contributions which are particular to the theory, QCD in our case. The
non-analytic contribution is expressed in terms of a generalized energy-like
coupling, the reduced temperature t and a magnetic-like coupling h, written
up to leading order near the critical point as

t =
1

t0

(
T − Tc
Tc

+ κX2

(µX
T

)2
)
, h =

1

h0

ml

ms
. (2)

These dimensionless couplings are defined such that the phase transition
occurs at t = h = 0. Since we are interested in the chiral phase transition
at chemical potential µX = 0, this corresponds to temperature T = Tc and
light-quark massml = 0. The strange quark massms is used in h to get rid of
multiplicative mass renormalization factors in order to obtain a well-defined
scaling field in the continuum limit. It is important to note that ms does
not break the two-flavor chiral symmetry group and,in principle, can also be
included in the definition of t. The dimensionless t0 and h0 are non-universal
constants. In the singular term in Eq. (1), ff(z) is a universal scaling function
of the free energy with the scaling variable z being a particular combination
of the t and h couplings, z ≡ t/h1/βδ. Depending on the universality class,
the critical exponents α, β and δ determine the singular behavior in the
chiral limit, h→ 0.

The conserved charge fluctuations are obtained as derivatives of the free
energy density f w.r.t. the corresponding chemical potentials and are, there-
fore, energy-like observables. At zero chemical potential, the expressions for
the singular parts in these cumulants can be obtained from Eq. (1) as

χX2n = − ∂2nf/T 4

∂(µX/T )2n

∣∣∣∣∣
µX=0

∼ −
(
2κX2

)n
h(2−α−n)/βδf

(n)
f (z) , (3)

where f (n)f (z) is the nth derivative w.r.t. the scaling variable z. Note that
the odd order cumulants are zero. From Eq. (2), it is easy to see that a single
temperature derivative yields a singular part the same as the one obtained
after a double chemical potential derivative. Therefore, if the regular con-
tributions are small enough, the second and fourth order conserved charge
fluctuations would behave like energy density and specific heat, respectively.
As one expects the chiral phase transition to belong to the O(4) universality
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class, one can plug in the O(4) critical exponents in the above-mentioned
cumulants. Since α is negative1, one finds that the second and fourth order
fluctuations remain finite in the chiral limit, whereas the sixth and higher or-
der fluctuations diverge. The scaling behavior of the universal non-analytic
contributions of χ4 and χ6 obtained from 3d O(4) spin model calculations
are shown in Fig. 2, which have been taken from Ref. [10]. The plots show
the variation of the singular parts w.r.t. the reduced temperature for differ-
ent h. It can be clearly seen in the left plot that the singular part of χ4

does not diverge in the chiral limit h → 0 but instead becomes zero at Tc
with a characteristic spike. On the other hand, the sixth order cumulant χ6

has a positive and negative peak which diverge in the chiral limit. We will
confront these expectations with our numerical findings.
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Fig. 2. Scaling behavior of the scaled singular parts of fourth (left) and sixth (right)
order fluctuations as a function of the reduced temperature scaled by z0 ≡ h1/βδ0 /t0.
The figure has been taken from Ref. [10].

It is also interesting to look at the “mixed” observables which are deriva-
tives of the free energy with respect to both the energy-like and magnetic-like
couplings. In contrast to energy-like observables, mixed quantities are di-
vergent already at second order. For example, consider the second order
conserved charge fluctuation

χX2 = −AκX2 H(1−α)/βδf ′f (z) + χX2,reg , (4)

where we move the factor of non-universal constant h0 into A by defining
H ≡ ml/ms = h0h and χX2,reg denotes the regular terms. Taking a H-deriv-
ative, one obtains the second order mixed susceptibility

∂χX2
∂H

= AκX2 H
(β−1)/βδf ′G(z) +

∂χX2,reg
∂H

, (5)

1 The fourth order cumulant would diverge for the Z(2) universality class as α is posi-
tive.
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where fG is a universal scaling function related to ff as fG(z) = −(1 +
1/δ)ff(z) + (z/βδ)f ′f (z). The observable has a moderate divergence, i.e.,
H(β−1)/βδ = H−0.34 in the chiral limit.

3. Numerical setup

Our calculations have been done on gauge ensembles generated by the
HotQCD Collaboration with the Highly Improved Staggered Quark (HISQ)
fermion discretization and the tree-level Symanzik-improved gauge action.
Part of these ensembles have been recently used in the determination of the
chiral phase transition temperature Tc [6] and in studying the sensitivity
of the Polyakov loop to the chiral phase transition [8]. Keeping the strange
quark massms fixed at its physical value, the gauge configurations have been
generated with light-quark masses ml = ms/27,ms/40,ms/80 and ms/160,
corresponding to pion masses 140 MeV, 110 MeV, 80 MeV and 55 MeV,
respectively. The measurements have been done in the largest available
volumes at one value of lattice spacing, a = 1/8T , i.e., at fixed lattice
temporal extent Nτ = 8.

4. Results

At the outset, we mention that since our work has been done with stag-
gered quarks at finite lattice spacing, the relevant universality class would
be that of 3d O(2) spin models. Hence, we use the O(2) critical exponents
which are quite close to O(4) and the qualitative conclusions should remain
the same.

We start with the results of the second order conserved charge fluctua-
tions, shown in the left plots of Figs. 3, 4 and 5. In the scaling regime, the
second order chemical potential derivative would behave like a single deriva-
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Fig. 3. Left: Second-order net-baryon number fluctuations as a function of tem-
perature for different H values. Right: Linear fit of χB2 (TNτ=8

c ) as a function of
H(1−α)/βδ using O(2) critical exponents.
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Fig. 4. The same as Fig. 3 but for electric charge fluctuations.
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Fig. 5. The same as Fig. 3 but for strangeness fluctuations.

tive w.r.t. temperature, i.e., like an energy density, if the singular part has
a dominant contribution. It is possible to estimate the singular contribution
in these quantities by extrapolating the value of the function in the chiral
limit at a given temperature [11]. Setting T = Tc at any given light-quark
mass in Eq. (4), we have

χX2 (t = 0, H) = −AκX2 H(1−α)/βδf
(1)
f (0) + const. reg. term +O

(
H2

)
. (6)

We see that the leading mass dependence is given by the critical exponents in
the singular term, followed2 by H2. For O(N) and Z(2) universality classes,
the combination (1 − α)/βδ is positive and < 1, thus, the singular term
vanishes in the chiral limit. Using the Tc value extracted in [6] for Nτ = 8,
we can plot χX2 (Tc, H) versus H(1−α)/βδ, as shown in the right plots of
Figs. 3, 4, 5. For small enough H, one would expect a linear dependence,
which is what we find already from physical light-quark masses within errors.
From the intercept of the linear fit which denotes the constant regular term
in Eq. (6), one can obtain the singular contribution at physical quark mass

2 The free energy density is even in H.
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as χX2 (Tc, H = 0)− χX2 (Tc, H = 1/27), up to leading order. We have listed
the singular contributions for physical quark mass at TNτ=8

c = 144 MeV in
Table I.

TABLE I

Approximate singular contributions to various χX2 at T = Tc at physical light-quark
mass ml = ms/27 at lattice temporal extent Nτ = 8.

Singular contribution at physical mass

χB2 (Tc) ∼ 50%

χQ2 (Tc) ∼ 30%

χS2 (Tc) ∼ 20%

From the singular contributions estimated above, one can get an idea
about the curvature of the chiral transition line in the chiral limit. The
ratios of the curvature coefficients κX2 for different chemical potentials can
be obtained directly from the ratio of the corresponding singular contri-
butions as everything else cancels out (see Eq. (6); note that f (1)f (0) is a
constant universal number). The preliminary estimates of the ratios κQ2 /κ

B
2

and κB2 /κS2 are 2.6 and 1.0 respectively. These values are quite close to the
corresponding ratios of the curvatures of the crossover line at physical quark
masses, 1.8(8) and 0.9(4), respectively, obtained in Ref. [1]. This indicates
that the curvature of the crossover line remains almost unchanged as one
goes towards the chiral limit.

Next, we discuss the qualitative features of the 4th order conserved charge
fluctuations. The singular part of χX4 would vanish at Tc as h0.01 with O(2)
exponents and thus, no divergence would be present in the chiral limit. The
appearance of the characteristic spike in the full quantity, as seen just for the
singular part in the left plot of Fig. 2 is , therefore, dependent on the relative
size of the regular term at a given light-quark mass ml. Our preliminary
results for the fourth order electric charge fluctuation χQ4 as a function of
temperature is shown in the left plot of Fig. 6. With decreasing light-quark
mass ml, a spike seems to be developing near Tc. The plot for χB4 shows
similar features but is noisy and requires more statistics. The similar plot
for strangeness, however, is quite different with a monotonically increasing
behavior. This happens most likely due to a relatively large contribution of
the regular terms, as seen already in Table I for χS2 .

According to O(2) or O(4) universality, the 6th and higher order fluctu-
ations are divergent in the chiral limit and should provide a strong evidence
for criticality. Due to a diverging singular part, the regular terms should
be less relevant towards the chiral limit. However, these observables require
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Fig. 6. Left: The fourth order cumulant of electric charge fluctuations, χQ4 as a
function of temperature for different H values. Right: The sixth order cumulant
of electric charge fluctuations, χQ6 versus temperature at two H values.

large statistics, and lattice calculations are increasingly expensive at smaller
masses. Our preliminary result for χQ6 in the right plot of Fig. 6 shows
features similar to that of the universal singular term in the right plot of
Fig. 2. At first glance, it might look like there is no divergence with decreas-
ing mass in the figure but one must keep in mind that firstly, the regular
parts can still be appreciable at these masses and second, the ratio of the
peak heights for H = 1/27 and H = 1/40 expected from O(2) singular parts
is only about 1.26, which is not too far from the actual data. The relatively
high positive part at lower T compared to the negative peak at high T for
χQ6 , in contrast to Fig. 2 (right), is probably due to large regular contribu-
tions to the electric charge fluctuations from pions as predicted from hadron
resonance gas (HRG) calculations.

Finally, we discuss results from two mixed observables: ∂χS2 /∂H, the
light-quark mass derivative of the strangeness fluctuation χS2 , and χls ≡
ms∂

〈
ψ̄ψ

〉
s
/∂ml, the mass derivative of the strange quark chiral condensate

(the dimensionless strange-chiral condensate is defined as
〈
ψ̄ψ

〉
s

= 1
4 trM−1s ,

where Ms is the strange quark, staggered fermion matrix). Both of these
quantities have the same divergence in the singular part as discussed towards
the end of Sec. 2 but with different non-universal factors. The regular terms
in these quantities are also undoubtedly different. It is worthwhile to point
out again that the strange quark condensate does not break the 2-flavor
chiral symmetry and hence is an energy-like observable. We show these two
susceptibilities in the left plots of Figs. 7 and 8. An interesting way to look
at the scaling behavior is to rescale the quantities with H−(β−1)/βδ and plot
it against the scaling variable z, as shown in Figs. 7 (right) and 8 (right).
Apart from regular contributions, the rescaled observable is proportional to
the universal scaling function f ′G(z) (see Eq. (5)). The data seems to fall
on top of each other in the figures with some deviations which can be taken
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Fig. 8. The same as Fig. 7 but for H-derivative of strange chiral condensate, χls ≡
ms∂
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/∂ml.

care of by considering regular terms. This clearly shows the universal scaling
behavior in these quantities already at physical quark masses. Although
seemingly different, quantities like χmP , the H-derivative of the Polyakov
loop studied in Ref. [8], behave exactly the same as the mixed susceptibilities
discussed above, as expected from universal scaling behavior. It is possible to
do a similar analysis of the regular and singular parts of the above-mentioned
mixed quantities, as has been done in Ref. [8].

5. Conclusions and outlook

To summarize, the fluctuations of conserved charges at finite lattice spac-
ing seem to be consistent with chiral phase transition belonging to O(2) uni-
versality class and, therefore, to O(4) in the continuum limit. They exhibit
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expected energy-like behavior with respect to chiral phase transition. Even
strangeness fluctuations and strange quark condensate behave as energy-
like quantities in the 2-flavor chiral limit. The singular contributions can be
estimated for different observables and may be used to determine the cur-
vature coefficients of the chiral critical line. In particular, our analysis for
the second order fluctuations at physical pion masses show a considerable
singular contribution. We intend to do a future comparison with HRG at
smaller masses to understand the interplay of singular and regular parts.
A more quantitative understanding of the mixed susceptibilities and con-
served charge susceptibilities will be obtained in future through a scaling
analysis following Ref. [8]. The work is under progress and more statistics
are being generated at lower masses in order to achieve proper continuum
and thermodynamic limits.
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