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CONUNDRUMS AT FINITE DENSITY∗
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Extending the successes of lattice quantum chromodynamics (QCD)
at zero as well as nonzero temperatures to nonzero density is extremely
desirable in view of the quest for the QCD phase diagram both theoretically
and experimentally. It turns out though to give rise to some conundrums
whose resolution may assist progress in this exciting but difficult area, and
should therefore be sought actively.
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1. Introduction

The theory of strong interactions, Quantum Chromo Dynamics (QCD),
has intriguing properties such as confinement or chiral symmetry breaking
which have been enigmas for over half a century. A major reason is, of
course, the dominance of large coupling in such hadronic properties. Cru-
cial clues in building physical pictures to understand them were provided by
the studies of simple models such as the bag model or NJL model. The dis-
covery of instanton solutions and the subsequent investigations of instanton-
based models enhanced our understanding further by emphasizing the role
of the zero and near-zero modes of the Dirac equation for interacting quarks.
Investigating all these models in extreme environments such as high temper-
atures/densities led to a variety of phase diagrams of strongly interacting
matter. It may not come as a surprise that even qualitative features of these
model phase diagrams differed substantially, not to mention the quantitative
details. For instance, the early sketches of the QCD phase diagram display
separate deconfinement and chiral transitions for all temperatures and den-
sities [1]. Nevertheless, they pointed to an interesting path to fathom chiral
symmetry breaking and/or confinement.
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QCD formulated on a space-time lattice has yielded a more firm guidance
in refining these pictures at finite temperatures to give us a reliable, in
some cases even quantitative knowledge of the phase structure. However,
extending this to finite densities or equivalently nonzero chemical potential,
one encounters conundrums many of which are unrelated to the latticization
and were hitherto still unknown to exist. These pose significant hurdles
in excursions inside the diagram from the temperature axis. There is, of
course, the famous fermion sign(phase) problem at nonzero baryon density
or equivalently nonzero baryon chemical potential. The aim of this paper is
to draw attention to the other, perhaps equally serious, problems.

2. The µ 6= 0 problems: I. Divergences

Let us begin by recalling that the (baryonic) chemical potential is a
Lagrange multiplier to enforce the constraint of (net baryon) number con-
servation in the grand canonical ensemble: ∂µJBµ = 0 is the current con-
servation equation and NB =

∫
d3xJB0 is the conserved charge. Following

the same principle on lattice, one obtains [2] a point split version for the
conserved number. Thus, introducing the chemical potential on the lattice
amounts to multiplying the forward [backward] time-like links with f(µa)
[g(µa)], with f(µa) = 1 + µa [g(µa) = 1 − µa] as seen in Fig. 1 for the
naïve fermions. This form of f and g, which has been shown to remain the
same for Wilson/Staggered/Improved local fermions as well, leads [2] to the
following form of the energy density and quark number density for a gas of
free quarks:

ε = c0a
−4 + c1µ

2a−2 + c3µ
4 + c4µ

2T 2 + c5T
4 , (1)

n = d0a
−3 + d1µa

−2 + d3µ
3 + d4µT

2 + d5T
3 .

Here, ci and di are constants, a is the lattice spacing, and the subscriptB of µ
has been dropped for simplicity as well as to indicate that these expressions

Fig. 1. Space-time (inverse temperature) lattice depicting a smallest loop (plaque-
tte) with time links and a quark covariant derivative term.
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hold for any conserved charge such as strangeness or electric charge. In
the continuum limit of a → 0, one obtains a leading quartic divergence
and a subleading µ-dependent quadratic one. Subtracting off the vacuum
contribution at T = 0 = µ eliminates the leading divergence in each case.
However, the µ-dependent a−2 divergences persist in both the energy density
and the quark number density. Note that these divergences are present
for the free theory itself. As a solution to this problem, different forms of
f and g have been proposed. The popular exponential choice [3], f(µa) =
exp(µa) and g(µa) = exp(−µa) as well as another choice [2], f(µa) = (1 +

µa)/
√

(1− µ2a2) along with g(µa) = (1 − µa)/
√

(1− µ2a2), both lead to
their corresponding c1 = 0 = d1, which then lead to finite results in the
continuum limit. Indeed, the µ-dependent divergences are eliminated for all
f ·g = 1 [4]. One anticipates this analytical proof of the lack of µ-dependent
divergences for free quarks to hold true in any order-by-order perturbative
inclusion of interactions with gluons. However, numerical simulations are
needed, and were employed [5] to extend the proof for the non-perturbative
interacting case as well, as shown in Fig. 2. Both the lack of any diverging
behaviour as well as a unique continuum limit is evident in the data.
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Fig. 2. Continuum limit for quark number susceptibilities with different actions. A
linear behaviour of the data and convergence to a unique continuum limit indicates
the absence of any divergence. Taken from Ref. [5].

A natural question arises as to why there are three (or more) lattice
QCD actions when the continuum QCD has only one. The usual answer
is universality. As long as all these actions reduce to the continuum QCD
action in the limit of a→ 0, universality tells us that physics should be the
same for all of them in that limit. Expanding the functions f , g in powers
of µa, one finds that the three actions differ by terms of O(µ2a2) and higher
which vanish in the a→ 0 limit and are thus irrelevant terms.
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Paradox: These irrelevant terms vanish from action as a → 0 but do
eliminate divergences. This appears to be a violation of universality! On the
other hand, since the divergence cancelling terms are absent in the contin-
uum theory, as for the naïve case, one wonders whether the divergences are
present in the continuum theory itself. As for any usual improved action,
one hopes that universality will ensure physical results are unaffected but it
seems prudent to check it in view of the above conundrum.

These modified/improved actions have a further problem. One can work
out the current conservation equation for the Lagrangian with µ 6= 0. It
remains unchanged only for the linear µ-case. It acquires µ2a2 and higher
order terms of even powers in all the other cases. Thus, integrating over
spatial dimensions, one obtains a conserved charge on the lattice only for the
linear µ-form. For all the divergence eliminating form of actions, one has no
conserved charge on the lattice anymore! Consequently, Z 6= exp(−β[Ĥ −
µN̂ ]) on the lattice for them and, therefore, one cannot define an exact
canonical partition function on lattice from the Z defined this way. Z =∑

n z
nZCn on the lattice only for the naïve linear µ-action. Once again, one

has to hope that it is possible at least in the continuum limit of a→ 0 but
clearly an explicit demonstration is necessary.

Most computational methods, if not all, consist of integrating out the
quark fields, leading to the quark determinant. Due to its gauge-invariant
nature, the determinant can be seen as a sum over all possible quark loops.
Any µ-dependence for Z arises solely due to loops with time-like links, and
hence is ∝ (f · g)l, where l is the number of positive time-like links in the
loop. This is illustrated for the simplest case of l = 1 in figure 1. Quark
loops of all sizes and types contribute for the naïve case of f , g = 1 ± µa,
as is indeed the case also in the continuum. However, since f · g = 1 for the
other two actions, it is clear that only limited number of loops contribute.
Indeed, only quark loops winding around the T -direction contribute to µB
dependence for these cases. Again, if all the actions were to lead to the same
physics, as they ought to, small quark loops which are topologically trivial
must start also contributing, as a → 0. It is far from clear how this may
happen since for all non-vanishing a, the f ·g = 1 condition applies and these
loops do not contribute to any µ-dependence. One possible way out maybe
that the small loops sum up to a µ-independent constant, preferably zero. It
is far from clear how this might come about in the interacting theory. This
is yet another conundrum which universality suggests should resolve itself
in the continuum limit, and needs to be verified by explicit computations.

3. Divergences exist in the continuum too

Let us recall that the conundrums discussed in the section above were
related to the differences in the f(µ) and g(µ) : f · g = 1 − µ2a2 for the
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naïve linear case and f · g = 1 for the other two. This, in turn, arose as the
latter got rid of the µ-dependent divergences that arise for the former choice.
Since in the continuum limit one finally has only the linear form, one may
wonder whether the µ-dependent divergences exist in the continuum as well,
and the lattice as a regulator is merely reproducing them systematically or
whether the latticization itself introduces the divergences.

Indeed, it turns out that contrary to the common belief, the free theory
divergences are not lattice artifacts. They exist in continuum too. Instead of
the lattice regulator, one can employ a momentum cut-off Λ in the continuum
theory to show [6] the presence of µΛ2 terms in number density easily. We
summarise below why one ought to expect them in the continuum itself.

The quark number density, or equivalently third of the baryon number
density for a single flavour, is defined as

n =
T

V

∂ lnZ
∂µ
|T=fixed (2)

with Z for free fermions given by

Z =

∫
Dψ̄Dψ e

∫ 1/T
0 dτ

∫
d3x[−ψ̄(γµ∂µ+m−µγ4)ψ] . (3)

Evaluating the quark number density, n, in the momentum space for the
massless free quark gas, one has

n =
2iT

V

∑
m

∫
d3p

(2π)3

(ωm − iµ)

p2 + (ωm − iµ)2
≡ 2iT

V

∫
d3p

(2π)3

∑
ωm

F (ωm, µ, ~p ) ,

(4)
where p2 = p2

1 + p2
2 + p2

3 and ωm = (2m + 1)πT . In the usual contour
method, the sum over m or ωm gets replaced as an integral in the complex
ω-plane. Together with the subtracted vacuum (µ = 0) contribution, one
has in the complex ω-plane line integrals along the directed arms 3 and 1 in
Fig. 3. Adding and subtracting the side arm line integrals, one obtains the
canonical answer from the residue of the pole P in Fig. 3. One still has to
evaluate the side arm contributions.

Let us introduce a cut-off Λ for all 4-momenta at T = 0 for a careful
evaluation of the divergent arms 2 and 4 contributions in Fig. 3. The µΛ2

terms can be seen to arise [6] from the arms 2 and 4∫
d3p

(2π)3

∫
2

+

∫
4

 dω

π

ω

p2 + ω2
= − 1

2π

∫
d3p

2π3
ln

[
p2 + (Λ+ iµ)2

p2 + (Λ− iµ)2

]
. (5)

Utilising the fact that Λ � µ, the integrand can be expanded in µ/Λ to
discover that while the leading Λ3 terms do indeed cancel there is a nonzero
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Fig. 3. The contour diagram for calculating the number density for free fermions
at zero temperature. P denotes the pole.

coefficient for the subleading µΛ2 term. It may be worth noting that the
arms 2 and 4 make a finite contributions to the µ3 term as well. One usually
ignores the subleading contribution from the arms 2 and 4, amounting to a
subtraction of the ‘free theory divergence’ in the continuum. This practice
suggests a prescription of subtracting the free theory divergence by hand on
the lattice as well. Such a prescription surely works in including the interac-
tions in a perturbation theory. It has been tested in numerical simulations,
and found to work excellently.

In order to test whether the divergence is truly absent in simulations, one
needs to take the continuum limit a→ 0 or, equivalently, NT →∞ at fixed
T−1 = aNT . For quenched QCD at T/Tc = 1.25 and 2 and for quark mass
m/Tc = 0.1, lattices with NT = 4, 6, 8, 10 and 12 were employed [6]. On 50–
100 independent configurations, quark number susceptibility was computed.
Since it is a derivative of the number density with µ, it should have a sim-
ple a−2 divergence. The 1/a2-term for free fermions on the corresponding
N3×∞ lattice was subtracted from the computed values of the susceptibility
in simulations. The results are displayed in Fig. 4 as a function of 1/NT . If
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Fig. 4. The quark number susceptibility at 1.25Tc (left panel) and 2Tc (right panel)
for m/Tc = 0.1. Taken from Ref. [6].
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the interactions were to induce additional non-perturbative divergent con-
tribution over and above the subtracted free theory ones, the susceptibility
should behave as χ20/T

2 = c2(T )N2
T +c1(T )+c3(T )N−2

T +O(N−4
T ). The di-

vergent c2-contribution would then lead to a rapid shoot-up near the χ20/T
2-

axis. c1 is the expected continuum result with c3 governing the approach to
the limit.

A glance at both the panels of Fig. 4 shows an evident lack of any
divergent rise in both or equivalently c2 ' 0 for both temperatures, since
both sets of data display only positive slope throughout. Furthermore, the
extrapolated continuum result coincides with the earlier result obtained with
the exp(±aµ) action [7].

4. The µ 6= 0 problem: II. Quark type

Placing quark fields on a lattice has the famous doubling problem. Mostly
staggered quarks are used in lattice QCD simulations, as they possess some
chiral symmetry. Consequently, the chiral condensate, 〈ψ̄ψ〉, can be em-
ployed as an order parameter to investigate the QCD phase diagram as a
function of T and µB. However, flavour and spin symmetry are broken for
them. Moreover, flavour singlet UA(1) symmetry is broken explicitly and
thus the question of the UA(1) anomaly is mute. On the other hand, the
holy grail of phase diagram, namely, the QCD critical point needs two light
flavours and the anomaly to persist [8] for the chiral transition on the µB = 0
axis to be of second order, and hence it to be a cross over for physical light
quarks. Domain Wall or Overlap quarks are, therefore, a better choice due
to their “exact” chiral symmetry on the lattice. Although their nonlocality
makes them computationally expensive, one can at least in principle employ
them to study the QCD critical point. Defining chemical potential for them
turns out, however, to be tricky. In particular, introducing chemical poten-
tial for either of them faces yet another conundrum related to the divergence
problem discussed above.

The usual Wilson Dirac fermion matrix is at the heart of definition
of both these nonlocal quarks. Adapting the exponential prescription for
DWilson, Bloch and Wettig [9] introduced µ. This definition was shown to
have no divergences in the free theory [10, 11]. Unfortunately, the BW pre-
scription breaks the lattice chiral symmetry at any finite density [11], leaving
us without any order parameter.

Luckily, a lattice action with continuum-like chiral symmetries for quarks
at nonzero µ has been proposed already [12]. Since the massless continuum
QCD action for nonzero µ can be written explicitly as a sum over right
and left chiral modes of quarks, the key idea was to employ similar chiral
projections for the Overlap quarks to construct the action at nonzero µ. It
was shown to have exact chiral invariance on the lattice, and thus chiral
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condensate works as an order parameter for the entire T–µB plane [12].
Moreover, using the Domain Wall formalism, it was also shown why this is
physically the right thing to do: it counts only the physical (wall) modes as
the baryon number, while the BW action includes all the unphysical heavy
modes as well.

It turns out, however, that this chirally-invariant Overlap action with
nonzero µ is linear in µ, i.e., comes with divergences. Furthermore, inventing
the f , g in this case which will (i) eliminate the divergences and (ii) still
preserve the exact chiral invariance on the lattice has so far not been possible.
Recently, it has been shown that SLAC fermions, which too are nonlocal
but possess exact chiral symmetry, also need a linear form in µ at finite
density, and it too possesses these divergences [13]. Thus, the linear form
seems the natural physical choice if chiral symmetries are to be exact on
the lattice, although the resultant free theory has divergences. As in the
previous section, these divergences can always be subtracted out especially
if eliminating them using nonlinear forms for f , g leads to the conundrums
already discussed.

5. The µ 6= 0 problems: III. Topology

Instanton vacuum provides a nice physical picture of chiral symmetry
breaking and the chiral phase transition [14]. Overlap Dirac operator spectra
have been used to investigate topology and to understand the nature of the
high temperature phase. In particular, the number of low quark eigenmodes
get depleted [15] as T goes up and the number of exact zero modes, a measure
of topological susceptibility, falls exponentially in the quark–gluon plasma
phase. Naturally, one can envisage doing a similar study for the high density
phase. However, it is not easy for QCD due to the sign problem.

QCD at nonzero isospin density as well as two colour QCD do not have
a sign problem, as the quark determinant is real in each of these cases. A
lot of work on both the cases has been done in studying the phase struc-
ture [16, 17]. In both these theories, it has been observed that an increase in
number density and a drop in the chiral condensate occurs at the same µc.
Interestingly though, the spectra of the corresponding low quark modes ap-
pear unaffected [18, 19] as a function of the corresponding µ even when
one runs through µc restoring the chiral symmetry. This observation in two
different theories raises an interesting possibility that the chiral symmetry
restoration is decoupled from a change in topology, and thus from perhaps
the deconfinement transition, at finite density/chemical potential in general.

Figure 5 displays the eigenvalue distribution [18] on the log scale to
highlight differences in the near-zero modes in the low and high density
phases for the nonzero isospin case.
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Fig. 5. A comparison of the near-zero quark mode distributions below and above
the finite isospin chemical potential at which chiral symmetry restoration occurs.
No visible difference is evident. Taken from Ref. [18], where further details can be
found.

Similarly, very little or no change is visible in the number of exact zero
modes or, equivalently, the topological susceptibility in both the cases [18,
19] across the corresponding chiral symmetry restoring transition.

6. Summary

Investigations at finite density using the reliable lattice QCD techniques
face many hurdles, the most famous of which is the sign/phase problem of
the quark determinant. We pointed out that the introduction of the chemical
potential on the lattice itself is plagued with conundrums. Most of these,
including the µ-dependent divergence, are not due to latticization. Indeed,
lattice only reproduces faithfully what exists in the continuum field theory.
Elimination of the divergence by modifications of action, as is commonly
done, leads to apparent conflicts with universality which need to be resolved
by carrying out continuum limit computations for many different ways of
adding chemical potential.

The chiral and flavour invariance is crucial for the QCD critical point
investigations. Eventually, one will have to employ the overlap quarks at
finite density for reliable simulations. Doing so while retaining the chiral
symmetry seems to lead to a linear µ-dependent action always. Subtraction
of free theory divergences was demonstrated to suffice nonperturbatively and
should be tested for the overlap action as well.

Numerical simulations suggest that the distribution of the topological
charge, Q, changes very little in going from the low T and low density phase
to the low T and high density phase as one goes across the isospin chemi-
cal potential µI or µNc=2 phase transitions, although the chiral condensate
drops and number density picks up at each of these phase transitions. This
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is in contrast to the change of low-T to high-T phase, which exhibits an
(exponential) fall-off. This may be a hint towards a possible separation of
the chiral symmetry restoring transition and the deconfining phase at finite
density. It will be challenging to check if this is indeed so for the finite
density QCD.
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TU Deutsche Forschungsgemeinschaft (DFG) through the project grant No.
315477589-TRR 211 (Strong-interaction matter under extreme conditions).
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