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We show that external magnetic fields increase the strength of explicit
center symmetry breaking induced by dynamical quarks. To study the con-
sequences on deconfinement, we perform a schematic mean-field calculation
of the Polyakov loop and its fluctuations, and find that the transition is
shifted towards lower temperatures. We also show qualitatively how light
quarks affect the magnetic field dependence of the deconfinement temper-
ature in an effective model.
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1. Introduction

Understanding of the impact of strong magnetic fields on deconfinement
is important for a proper description of non-central heavy-ion collisions,
neutron stars as well as the early Universe [1]. Although gluons are not
electrically charged, they couple to the magnetic field indirectly due to the
electric charge of quarks. This results in a non-trivial interplay between
strong interactions and electromagnetic forces. Particularly, the deconfine-
ment is sensitive to the external magnetic field [2–4].

Deconfinement is mostly understood in the pure gauge theory where it
can be related to the spontaneous breaking of the Z3 center symmetry [5, 6].
The Polyakov loop [7–9], which probes the free energy of a static color
source immersed in a hot medium, is a usual choice of the order parameter
in this theory. Its expectation value is zero below the critical temperature
and the system is invariant under the center symmetry. Above the critical
temperature, the Polyakov loop expectation value is finite and the center
symmetry is spontaneously broken. For three colors, the transition is first-
order.
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In the presence of dynamical quarks, the Z3 symmetry is broken explicitly
and for a sufficiently large breaking, deconfinement turns into the second-
order transition and then into a crossover. In the last case, the Polyakov
loop is no longer a true order parameter but nevertheless it remains a useful
probe of the screening properties of the QCD medium [10].

Susceptibilities of the Polyakov loop are another observables relevant for
studying deconfinement [11]. They are discontinuous at the first-order tran-
sition and have a peak in the case of the crossover which provides a way
to define a (non-unique) pseudo-critical temperature. Additional observ-
able sensitive to deconfinement is the ratio of the transverse (imaginary) to
longitudinal (real) susceptibilities. In the pure gauge theory, this quantity
exhibits a step-function behavior [11, 12]. When light dynamical quarks are
included, this ratio becomes considerably smoothened but remains sensitive
to deconfinement [12, 13]. It is also useful as it provides means to quantify
the strength of explicit center symmetry breaking [14]. Another interesting
observable is the static quark entropy, defined as the temperature derivative
of the static quark free energy, which was argued to provide a more reliable
way to extract the critical temperature of deconfinement than the Polyakov
loop inflection point when calculated on the lattice [13].

In this work, we discuss the effect of a strong magnetic field on deconfine-
ment in the heavy-quark limit. To this end, we employ an effective Polyakov
loop model in which the effect of quarks is modeled as a linear breaking term
coupled to the Polyakov loop. We show that the magnetic field increases the
strength of Z3 symmetry breaking and hence shifts the deconfinement to-
wards lower temperatures. Finally, we discus the case of light quarks within
the PNJL model and show how the problem of increasing deconfinement
temperature can be understood with our approach.

2. Effective Polyakov loop model

In this work, we model the effective QCD potential as

U = UG + UQ , (1)

where UG is the pure gauge Polyakov loop potential and UQ contains the
contribution due to dynamical quarks. The former exhibits the spontaneous
center symmetry breaking, while the latter breaks this symmetry explicitly.

To describe the pure gauge sector, we employ the effective potential from
Ref. [12]

UG
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where

L = x+ iy , L̄ = x− iy (3)
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are the Polyakov loop and its conjugate, and MH(L, L̄) is the SU(3) Haar
measure

MH

(
L, L̄

)
= 1− 6LL̄+ 4

(
L3 + L̄3

)
− 3

(
LL̄
)2
. (4)

Parameters of the potential were obtained using the pure gauge data on the
Polyakov loop expectation value and its fluctuations (see Ref. [12] for their
exact form).

The effect of dynamical quarks is modeled with the one-loop effective
potential

UQ
T 4

= − 2

T 3

∑
f

∫
d3p

(2π)3
(
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where the sum runs over different quark flavors and

gf
(
m,T, L, L̄

)
= 1 + 3L e−βEf + 3L̄ e−2βEf + e−3βEf , (6)

with E2
f = ~p 2 + m2

f , where mf is the mass of the f -flavor quark. For the
purpose of studying the Polyakov loop and its fluctuations, this potential
can be approximated by the linear form

UQ
T 4
≈ U0
T 4
− hx+O

(
x2, y2

)
, (7)

where U0 is the leading fermion contribution to the pressure, irrelevant for
studying the Polyakov loop physics, and

h = −∂
(
UQ/T 4

)
∂x
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with
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≈ 12

T 3
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(2π)3
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where the second approximation holds in the limit of heavy quarks (m/T�1)
in which only the leading Boltzmann factor contributes in Eq. (9). Then the
integral can be calculated analytically

hQ(m,T ) ≈ 6

π2

(m
T

)2
K2

(m
T

)
, (10)

where Kν(x) is the modified Bessel function of the second kind. The left
panel of Fig. 1 shows the temperature dependence of hQ(m,T ) for quark
masses 0.005GeV (the dashed red line), 0.5GeV (the dash-dotted blue line)
and 1GeV (the solid black line). The explicit breaking strength tends to a
constant for small quark masses and decreases as the quark mass increases.
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Fig. 1. (Color online) Temperature dependence of the explicit center symmetry
breaking strength for different quark masses and vanishing magnetic field (the left
panel) and for the fixed quark mass and different magnetic fields (the right panel).

In the presence of a constant and homogeneous magnetic field, quarks
undergo Landau quantization and, consequently, their dispersion relation
takes the following form:

E 2
f,k,σ = m2

f + p2z + (2k + 1− σ)|qfB| , (11)

where the subsequent Landau levels are quantified by k = {0, 1, 2 . . . } and
σ = ±1. In thermodynamic quantities, the sum over states becomes modified
accordingly

2

∫
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(2π)3
→ |qB|

2π
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∞∫
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dpz
2π

, (12)

where the summation runs over Landau levels and the factor |qB|/(2π) ac-
counts for the planar density of each Landau level. Consequently, the explicit
Z3 breaking term becomes a function of magnetic field

h =
∑
f

hBQ (mf , T, qfB) , (13)

where hBQ(m,T, qB) is obtained by applying prescription (12) into Eq. (9).
In the heavy-quark approximation, it can be written as

hBQ(m,T, qB) =
3|qB|
π2T 3
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where
M2
k,σ = m2 + (2k + 1− σ)|qB| . (15)
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The temperature dependence of hBQ(m,T,B) can be seen in the right panel of
Fig. 1. Here, the quark mass is fixed at 1GeV and magnetic fields are 0 (the
solid black line), 1.0GeV2 (the double-dot-dashed green line) and 2.5GeV2

(the dotted purple line). The external magnetic field increases the explicit
center symmetry breaking strength and hence its role is opposite to the
quark mass.

In this work, we apply the mean-field approximation in which the real
and imaginary parts of the Polyakov loop are obtained by solving the gap
equations

∂U
∂x

=
∂U
∂y

= 0 . (16)

For a real and positive h, the expectation value of the imaginary part van-
ishes. Nevertheless, one can still explore fluctuations in both longitudinal
(real) and transverse (imaginary) directions which are related to the inverse
of the curvature matrix

T 3χL =
(
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)
11
, T 3χT =

(
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)
22
, (17)

with
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(
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∂2U
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∂2U
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∂2U
∂y2

)
, (18)

which is evaluated at point (x0, y0) satisfying the gap equations (16). Lon-
gitudinal and transverse susceptibilities can be composed into the following
ratio [11, 12]:

RT = χT/χL , (19)

which has been found to be a robust probe of deconfinement by LQCD
studies [11, 13]. Moreover, it is sensitive to Z3 symmetry and spontaneous
as well as the explicit breaking [14]. Another observable relevant for studying
deconfinement is the static quark entropy

SQ =
∂

∂T
T ln〈L〉 (20)

which was argued to provide a scheme-independent way of defining the crit-
ical temperature of deconfinement from tracking its peak [13].

3. Polyakov loop fluctuations for heavy quarks

Before the discussion of numerical results obtained within the current
model, we examine the efficacy of the linear approximation of the full one-
loop potential. To this end, we compared the Polyakov loop dependence of
the full potential (with the subtracted U0 term) and the linear approximation
for the single quark flavor. In the case of the heavy quark, mq = 0.8GeV,
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(the left panel of Fig. 2) the full potential results (dots and triangles) and
linear approximation (lines) are almost indistinguishable for both vanishing
magnetic field (the solid black line) and finite qB (the dashed red line). The
temperature is fixed at 0.2GeV. Hence, the linear approximation provides
an excellent description of the full potential for heavy quarks. Surprisingly,
the linear approximation remains reliable even for massless quarks in the
absence of magnetic field (see solid black line in the right panel of Fig. 2).
However, this is no longer true for finite magnetic field. Especially, for
massless quarks, the linear approximation is not reliable for fields relevant
for studying chiral dynamics (qB ∼ 0.25GeV2, see the dashed red line in
the right panel of Fig. 2).
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Fig. 2. (Color online) Comparison between the full quark potential (points) and
its linear approximation (lines) for a heavy quark (mq = 0.8GeV, the left panel)
and massless quark (the right panel). Solid black lines: vanishing magnetic field,
dashed red lines: finite magnetic field.

We now describe results on the Polyakov loop and its fluctuations for
the single-flavor heavy quarks. The first-order transitions are stable under
small symmetry breaking [15] and hence, there exists a critical quark mass
for which, in absence of other parameters, the deconfinement turns into the
second-order transition. For the model used in the current study, the critical
value is m0 = 1.1GeV for one quark flavor. The left panel of Fig. 3 shows
the temperature dependence of the real part of the Polyakov loop, calculated
for quark mass 1.4m0 = 1.54GeV. Since the quark mass is above the crit-
ical value, the deconfinement for the vanishing magnetic field is first-order
and the Polyakov loop is discontinuous (the solid red line). The external
magnetic field enhances the breaking of the center symmetry and for its suf-
ficiently large value (qB= 3m2

0, the dash-dotted green line), the deconfine-
ment reaches the critical point and, for even larger values of qB, it becomes
a crossover (the dashed blue). The right panel of Fig. 3 shows the static
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quark entropy. It is discontinuous for the first-order transition, diverges at
the critical point and has a finite peak at crossover which makes it a robust
probe of deconfinement.
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Fig. 3. (Color online) The Polyakov loop expectation value (the left panel) and
static quark entropy (the right panel) for the fixed quark mass, mq = 1.4m0, and
different values of the magnetic field.
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panel) for the fixed quark mass, mq = 1.4m0, and different values of the magnetic
field.
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Corresponding susceptibilities can be seen in Fig. 4, where the upper
left panel corresponds to the longitudinal susceptibility and the upper right
panel to the transverse one, respectively. The longitudinal susceptibility
is discontinuous at the first-order transition, diverges at the deconfinement
critical point and has a finite peak in the crossover region. While the trans-
verse susceptibility is also discontinuous for the first-order transition, it does
not diverge at the critical point, in comparison to the longitudinal one. The
lower panel shows the corresponding RT ratio. At low temperature, RT is
close to one (the limit following from the Z3 symmetry [11]) and it decreases
rapidly with the temperature in the transition region.

4. Deconfinement temperature in case of light quarks

The model described in this work may be useful for understanding why
the naive implementation of the PNJL model leads to increasing deconfine-
ment temperature. The explicit center symmetry breaking increases with
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Fig. 5. (Color online) The upper left panel: quark mass profiles obtained with the
PNJL model for three values of the magnetic field. The upper right panel: the
corresponding effective Z3 breaking strength. The lower left panel: quark mass
profiles obtained with the LQCD data on the quark condensate for three values of
the magnetic field. The lower right panel: the corresponding effective Z3 breaking
strength.
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the magnetic field and decreases with the quark mass. For a PNJL model,
one can introduce an effective Z3 breaking strength, h[M(T,B), T, B], which
becomes a function of the dressed quark mass M(T,B). An illustrative cal-
culation of the constituent quark mass can be seen in the upper left panel of
Fig. 5 (the details of calculations can be found in Ref. [4]). At low tempera-
tures, quark mass increases with the magnetic field which is a manifestation
of the magnetic catalysis (which can be captured by most of NJL models).
The increase of quark mass is sufficient to overcome the enhancing effect on h
due to magnetic field in the temperature range relevant for the crossover (see
the upper right panel of Fig. 5) and, in consequence, the deconfinement tem-
perature increases (see the dashed red curve in Fig. 6).

The lower left panel of Fig. 5 shows the LQCD-improved quark mass
profile (see Ref. [4] for details). Points are obtained using the lattice data
from Ref. [16]. The lower right panel shows the corresponding center sym-
metry breaking strength which is strongly enhanced by the magnetic field
and leads to decreasing deconfinement temperature (see the solid black curve
in Fig. 6). Therefore, the competing effects of the quark mass and magnetic
field lead to opposite trends of the magnetic field dependence of deconfine-
ment temperatures in case of LQCD and PNJL model.
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5. Conclusions

In this work, we discussed the impact of a finite magnetic field on the
explicit center symmetry breaking strength and deconfinement of heavy
quarks. We found that h(T,B,m) increases with the magnetic field. Con-
sequently, deconfinement phase transition is shifted towards lower tempera-
tures which was shown by studying the Polyakov loop and its susceptibili-
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ties in the heavy-quark regime within an effective model. Especially, for the
sufficiently strong magnetic field, the first-order transition turns into the
crossover. Additionally, we calculated the ratio of susceptibilities and static
quark entropy which are also sensitive probes of deconfinement.

With the model described in this work, we also demonstrated a sub-
tle interplay between chiral dynamics and deconfinement using quark mass
profiles obtained from the PNJL model and lattice-inspired parametrization.
This example may be useful for developing more accurate effective models
of QCD.
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