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We present a recent development towards a unified description of quark–
hadron matter in the QCD phase diagram that is based on a cluster de-
composition of the generalized Beth–Uhlenbeck approach to quark matter,
self-consistently coupled to Polyakov-loop and mesonic background fields.
The Mott dissociation of hadrons under extreme conditions of temperature
and density is triggered by chiral symmetry restoration and confining as-
pects are modeled by the coupling to the background mean fields. First
results for the QCD phase diagram with the capability to describe criti-
cal endpoints as well as crossover-all-over are presented and an excellent
agreement with lattice QCD on the temperature axis is obtained.
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1. Introduction

The QCD phase diagram is a key to understanding the critical behav-
ior of QCD at finite temperature T and chemical potential µ. The well-
established limiting cases, however, the hadron resonance gas (HRG) and
the perturbative quark–gluon plasma (pQGP), fail to be applicable just in
the relevant hadron-to-quark matter transition region. Here, a nonpertur-
bative approach is required that has to adequately describe at least these
key phenomena:

1. bound state formation and dissociation,
2. chiral symmetry breaking and restoration,
3. confinement and deconfinement of quarks and gluons.
∗ Presented at the on-line meeting on Criticality in QCD and the Hadron Resonance

Gas, Wrocław, Poland, 29–31 July 2020.

(425)



426 D. Blaschke

The only nonperturbative approach that addresses these effects ab initio,
starting from the very Lagrangian of QCD, are numerical simulations of
the lattice discretized version of this gauge theory. Unfortunately, these
lattice QCD simulations cannot be performed at finite chemical potentials
where they suffer from the yet unsolved sign problem. In this situation,
different strategies have been followed to develop effective models that could
describe the equation of state (EoS) and thus the phase diagram in the
entire T–µ plane, including, in particular, the critical behavior due to the
phase transformation and its possible critical point(s). These models could
be calibrated with lattice QCD results in the vicinity of the T -axis, for
vanishing or small µ, and with constraints from compact star physics at
large µ and T = 0. For the introduction to the present contribution, we
recall two examples for such strategies within the well-known class of two-
phase models.
Maxwell construction: Separate equations of state for the hadronic phase
(HRG) and the pQGP are considered in direct phase equilibrium. As has
been pointed out early on (see, e.g., Ref. [1]), this cannot work due to the
dominance of the dominant higher number of low-mass degrees of freedom
in the pQGP at all temperatures and the absence of confinement — the
hadronic world would not exist! Just adding a phenomenological bag pres-
sure works well as a robust thermodynamic confinement mechanism leading
to reasonable estimates for the deconfinement transition in the QCD phase
diagram. However, by matching these separate HRG and QGP EoS using
the Gibbs conditions of phase equilibrium, necessarily a jump in the first
derivatives of the thermodynamic potential arises which signals a first-order
phase transition. This is in contradiction with the precise results of lat-
tice QCD simulations showing that at least in the domain of µ/T . 2 and
T & 130 MeV the QCD phase transition is a crossover [2]. As there are
arguments that also at low temperatures the transition may be a crossover
due to symmetries in color superconducting quark matter that entail a con-
tinuity of quark(-gluon) and hadron phases [3, 4], there may be a second
endpoint of the first-order transition at low temperatures [5] or the tran-
sition may even be a crossover-all-over the QCD phase diagram. Within
the two-phase EoS Maxwell construction scheme, one has improved the con-
fining mechanism in the quark matter EoS by a flexible relativistic density
functional (RDF) approach that could mimic crossover behavior at small
chemical potentials in the sense of a very small latent heat of the first-order
transition [6]. This EoS has been the basis for numerous applications within
the three-fluid hydrodynamics simulation approach, see [7, 8] and references
therein.
Interpolation: The simple HRG model for the hadronic phase and the bag
model for the QGP phase certainly are not suitable for being extended to the
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very transition region, due to the absence of quark substructure effects in the
former and the absence of hadronic correlations in the latter. Therefore, the
concept of a phase transition construction directly between these idealized
descriptions of the two phases has been replaced by a method that leaves a
corridor between these phases which is subject to a separate modeling, an
interpolation. This method has been pioneered in [9] for the interpretation of
lattice QCD thermodynamics at µ = 0, but was then further developed also
for the case of high µ and low temperatures in applications to compact star
astrophysics, see [10, 11] and references therein. A quantitatively reliable
interpolation between HRG (even with excluded volume effects mimicking
the quark substructure effect of quark Pauli blocking) and a pQGP EoS has
been given in [12] where an interpolation in the T–µ plane has been defined
by a “switch function” that results in a perfect description of lattice QCD
thermodynamics data where they exist and otherwise models a “crossover-
all-over” situation. At low temperatures, this should not be reliable since
here, the effects of the nuclear liquid–gas phase transition are not captured
by a simple HRG (this has been amended, e.g., by Vovchenko [13]) and it
is desirable to model a first-order deconfinement transition with a critical
endpoint1 (which has been realized, e.g., in [15]). For defining an interpo-
lation with a critical point a method has been suggested in [16] which uses
the knowledge of the thermodynamic behavior in the vicinity of the critical
point of the Ising model. Such an interpolation approach has been developed
further and in the form described in Ref. [17] became a workhorse model for
the EoS to be used in simulations of heavy-ion collisions in the framework
of the beam energy scan theory investigations.

The above models, albeit being successful in describing existing lattice
QCD data and providing a tool for investigating the consequences of a crit-
ical endpoint of the deconfinement transition, are not satisfactory as any
microphysical details of the transition itself cannot be addressed by the as-
sumption of a switch function. In the main section of this contribution, we
report on first results of elucidating the aspect of hadronic bound state dis-
sociation in the transition region that have been obtained within a cluster
expansion of the generalized Beth–Uhlenbeck approach to the thermody-
namics of nonideal plasmas [18–21].

2. Cluster expansion of the Beth–Uhlenbeck approach

The main idea for unifying the description of the QGP and the HRG
phase of low-energy QCD matter is the fact that hadrons are bound states

1 Note that a model with two critical endpoints in the QCD phase diagram can also
be obtained when extrapolating a RDF approach to nuclear matter with a T - and
µ-dependent excluded hadron volume [14].
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(clusters) of quarks and should, therefore, emerge in a cluster expansion of
interacting quark matter as new, collective degrees of freedom [22]. For the
total thermodynamic potential of the model, from which all other equations
of state can be derived, we make the following ansatz [23]:

Ωtotal(T ;φ) = ΩQGP(T ;φ) +ΩMHRG(T ) , (1)

where ΩQGP(T ;φ) = ΩPNJL(T ;φ) + Ωpert(T ;φ) describes the thermody-
namic potential of the quark and gluon degrees of freedom with a perturba-
tive part Ωpert(T ;φ) and a nonperturbative mean field part ΩPNJL(T ;φ) =
ΩQ(T ;φ) + U(T ;φ) that can be decomposed into the quark quasiparticle
contribution ΩQ(φ;T ) and the gluon contribution that is approximated by
a (mean field) Polyakov-loop potential U(T ;φ) [24]. For the MHRG part of
the pressure of the model, we have PMHRG(T ) = −ΩMHRG(T )

PMHRG(T ) =
∑

i=M,B

Pi(T ) , (2)

where the sum extends over all mesonic (M) and baryonic (B) states from
the particle data group (PDG), comprising an ideal mixture of hadronic
bound and scattering states in the channel i that are described by a Beth–
Uhlenbeck formula. Then the partial pressure of the hadron species i reads

Pi(T ) = ∓di

∞∫
0

dp p2

2π2

∞∫
0

dM

π
T ln

(
1∓ e−

√
p2+M2/T

) dδi(M ;T )

dM
, (3)

where di is the degeneracy factor. For the phase shift of the bound states of
Ni, quarks in the hadron i we adopt the simple model that is in accordance
with the Levinson theorem

δi(M ;T ) = π Θ(M −Mi)Θ(M −Mthr,i(T )) . (4)

It describes the occurrence of a bound state at the mass Mi (step-up) and
its removal (step-down) when this mass hits the corresponding continuum
thresholdMi = Mthr,i(T, µ) (Mott effect) at the Mott temperature TMott(µ).
Inserting (4) into (3) results in

Pi(T ) = ∓di

∞∫
0

dp p2

2π2
T ln


(

1∓ e−
√

p2+M2
i /T
)

(
1∓ e−

√
p2+Mthr,i(T )2/T

)
Θ (Mthr,i(T )−Mi) .

(5)
Now, we discuss two examples for the application of the approach.
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2.1. The high-temperature case

In Ref. [23], we have applied the cluster decomposition approach to the
hadron-to-quark matter transition at finite T and vanishing µ where we per-
form a comparison with modern lattice QCD results. Here, we do not solve
the gap equation for the dynamical quark mass, but we adopt a linear rela-
tion between the threshold masses in the different hadronic channels and the
chiral condensate ∆l,s(T ) that we fit to the lattice QCD data. The chiral
symmetry restoration encoded in this behavior triggers the Mott dissocia-
tion of all components of the HRG. For the temperature dependence of the
Polyakov loop φ, however, we solve the gap equation that follows from the
stationarity of the thermodynamical potential ΩQGP(T ;φ) w.r.t. variation
of φ. In this way, the thermodynamic behavior of all three contributions to
the QGP pressure becomes synchronized and results in a smooth behavior.
The temperature dependence of all contributions to the pressure is shown
in Fig. 1.

Fig. 1. (Color online) The temperature dependence of the total scaled pressure
(red solid line) and its constituents: MHRG (coral dotted line), quark (dashed ma-
genta line), Polyakov-loop potential U(T ;φ) (dash-dotted gray/green line), pertur-
bative QCD contribution (dash-dotted blue line) compared to the lattice QCD data:
HotQCD Collaboration [25] (light gray/green band) and Wuppertal–Budapest Col-
laboration [26] (dark gray/blue band). For comparison, also the HRG is shown
(dash-dotted black line). For details, see Ref. [23].

Despite the fact that a simple HRG model alone describes the lattice
QCD data well up to T ∼ 200 MeV, i.e. beyond the pseudocritical tem-
perature Tc = 156.5 ± 1.5 MeV [2], the account for the quark substructure
of the hadrons in the generalized Beth–Uhlenbeck approach leads to their
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Mott dissociation in the temperature region 150 < T [MeV] < 200. In this
temperature region, the quark quasiparticle contribution rises from zero to
almost the asymptotic Stefan–Boltzmann behavior, much steeper than the
full result from lattice QCD simulations. For the very good agreement of
our approach with the latter, it is important that the contribution from the
Polyakov loop potential is negative (like a bag pressure) in the transition
region and asymptotically describes the Stefan–Boltzmann contribution of
the gluons. It is well-known and confirmed by the lattice QCD data that
the behavior at high temperatures deviates from the Stefan–Boltzmann one
for quarks and gluons as massless, ideal quantum gases but can be well-
described by virial corrections in O(αs) perturbation theory, see [23] for the
details.

2.2. The low-temperature case

In the low-temperature case (T < 100 MeV) that has been discussed in
Ref. [27], the same ansatz (4) for the hadronic phase shifts has been made,
but the number of relevant components in the HRG is reduced to that of the
nucleons, since no mesons get excited at this low T and we restrict ourselves
to chemical potentials below the hyperon threshold. With similar arguments,
the Polyakov-loop potential and perturbative QCD corrections are neglected
in this first step calculation. An important role, however, plays an effective
interaction energy density functional depending on the scalar and vector
densities [28] which determine the quasiparticle dispersion relations for the
quarks and nucleons and have to be determined self-consistently by solving
corresponding gap equations. The result for the density n = −∂Ω/∂µj ,
j = n, q can be inverted and from the Gibbs potential µ(n;T ), one obtains
the thermodynamics of the system. The results shown in Fig. 2 exhibit
two van-der-Waals wiggles which correspond to the liquid–gas transition in
nuclear matter and the deconfinement transition, respectively.

In Fig. 3, we summarize these results for the phase diagram in the low-
temperature region, where two critical endpoints are obtained. A slight
change in the model parameter responsible for the screening of the string
tension in the density functional leads to a replacement of the second CEP
by the case of crossover-all-over for the deconfinement transition. This is a
remarkable result for such a simple unified model of quark–nucleon matter.
In a parallel attempt at a unified description of quark–nuclear matter ap-
plied in [29] to astrophysics of compact stars, the aspect of nucleonic parity
doubling at the chiral restoration transition has been included and leads
to another corner of first-order phase transition at low temperatures in the
QCD phase diagram.
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Fig. 2. (Color online) Phase transition from hadronic to quark EoS shown for both
the cluster expansion and the two-phase approach. The upper left panel shows the
chemical potential over density comparing different approaches, while the green
dashed box, showing the phase transition of the cluster expansion, is magnified in
the right panel. The vertical black thin dotted lines show the region, where both
quarks and hadrons exist in the system of cluster expansion. The lower left panel
shows the concentration of hadrons and quarks from the cluster expansion, where
the dashed lines are the modifications due to Maxwell construction. Abridged
from [27].
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Fig. 3. (Color online) Phase diagram of the cluster expansion with the nuclear
liquid–gas phase transition (black) and two parametrizations of quark–hadron tran-
sition. The light gray/red lines feature a first order phase transition with mixed
phase and a critical endpoint at Tc = 43 MeV and µc = 909 MeV. The dark
gray/green dashed line represents a crossover-all-over scenario without critical end-
point. The dashed lines show the crossover transition, retrieved from the inflection
point in chemical potential over density. Abridged from [27].
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3. Conclusions

In this contribution, we have presented a promising approach to a unified
description of HRG and QGP in the QCD phase diagram, whereby the focus
was on the hadron dissociation as decisive element for such a nonperturba-
tive marriage. It has been accomplished within a cluster decomposition of
the generalized Beth–Uhlenbeck approach and the results of two benchmark
calculations have been presented here. They show very good agreement with
lattice QCD thermodynamics on the T -axis and the capability of describing
a critical endpoint as well as a crossover-all-over situation for the deconfine-
ment transition which would be not possible within two-phase approaches
employing a Maxwell construction of the phase transition. In developing
the approach further, both regions of the QCD phase diagram shall be de-
scribed with the same model assumptions and an extension to finite isospin
asymmetries as well as inclusion of the parity doubling aspects in the HRG
component of the EoS shall be accomplished. These aspects are important
preconditions for the application of the approach in simulations of heavy-
ion collisions as well as astrophysical phenomena such as neutron stars, their
mergers and supernovae.
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