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We examine the influence of various S-matrix structures: poles, roots,
and Riemann sheets, on the density of states.
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1. Introduction

The S-matrix formulation of statistical mechanics [1, 2] offers a unique
approach to study how the interactions among constituents determine the
bulk properties of the medium. The essential connection is provided by
the density of states (DoS) [3, 4], which can be expressed in terms of the
S-matrix via

B(E) =
1

2
Im Tr

[
S−1

d

dE
S −

(
d

dE
S−1

)
S

]
=

d

dE
Im ln detS(E) . (1)

The thermal partition function is given by an integral of the DoS with the
appropriate Boltzmann weight. For example, the thermal pressure due to
the interaction can be computed as

∆P =

∫
dE

2π
B(E)P (0)(E, T ) ,

where P (0)(E = ma, T ) denotes the pressure of an ideal gas of particles
with mass ma. Other thermal (and fluctuation) observables can be similarly
computed [5, 6].

The advantage in writing the DoS in terms of the S-matrix is clear: The
S-matrix has a direct connection to (existing and future) experimental data,
accompanied by many powerful theoretical tools, e.g. chiral perturbation
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theory [7, 8], lattice QCD [9], and effective models [10–12]. It is also a good
theoretical framework to discuss interactions. In these proceedings, we shall
examine, within a simple coupled-channel model, how the various structures
of particle dynamics would influence the DoS.

2. DoS of an interacting system

2.1. Single channel

If the interaction is dominated by a single resonance (non-relativistic) of
mass mres and width γ, the resonant phase shift can be written as

δres(E) = tan−1
γ(E)/2

mres − E
. (2)

The effective spectral function B assumes the standard Breit–Wigner form
upon neglecting the energy dependence of the numerator γ(E)→ γbw

Bres(E) = 2
d

dE
δres(E)

≈ γbw
(E −mres)2 + γ2bw/4

= −2 Im
1

E −mres + i γbw/2

=
d

dE
Im ln

(
mres + i γbw/2− E
mres − i γbw/2− E

)
. (3)

The last two lines make clear the connection to the resolvent [3]. When the
empirical phase shift from scattering experiments is used, both resonant and
non-resonant interactions are correctly incorporated, and the result becomes
insensitive to the choice of parameters in an individual model.

2.2. Coupled-channel system

As energy increases, new interaction channels open up and the scatter-
ing becomes inelastic. The prescription of Eq. (1) remains valid, but the
S-matrix should now be formally identified as a matrix acting in the open-
channel space, i.e. an Nchan ×Nchan matrix [3, 4, 6]. From this, an effective
phase shift Q can be constructed

Q(E) =
1

2

E∫
Eref

dE′B
(
E′
)

=
1

2
Im ln det

(
S(E)

S(Eref)

)
. (4)

This is an essential simplification: a single effective phase shift function to
describe the whole multi-channel system.
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3. Improving the HRG

The hadron resonance gas (HRG) model [13] provides a simple scheme
for incorporating resonances in B(E) (see Eq. (3))

detS(E) =
∏
{res}

z?res − E
zres − E

, (5)

where {res} is a table of resonances (e.g. from PDG) approximated as simple
poles

zres ≈ mres − i 0+ . (6)

QHRG is then given by a sum of step functions

Q(E)→ QHRG(E) =
∑
res

dIJ × (π × θ(E −mres)) . (7)

The finite widths of resonances can be easily accounted for, e.g., via

zres → mres − i γ(E)/2 . (8)

To study detS in an interacting system, we compute it over the complex
plane for a simple coupled-channel model describing the (ππ,KK̄) system.
An important feature of the model is that resonances are dynamically gener-
ated instead of being explicitly introduced in the Hamiltonian. See Ref. [4]
for details. The result is shown in Fig. 1, with the phase shift shown in
Fig. 2. Here, we highlight some key features:

1. Five resonance poles are identified in the model [4], distributed across
the Riemann sheets II (3 poles) and III (2 poles, not shown). The
DoS is only strongly influenced by some of them: e.g. p1 and p2, but
not p3. This is understood by considering the continuity of the phase
of detS across the Riemann sheets: p3 is far away from the physical
line as sheet I and sheet II are no longer connected above the KK̄
threshold. In the latter case, the relevant poles are those in sheet III.

2. Roots are important in determining the DoS. They encode details of
non-resonant interactions. We find that substantial contribution comes
from root r1. Unfortunately, many studies report only the locations
of poles but not for roots.

3. It is obvious that the distribution of poles and roots in the interacting
system does not follow scheme (5), i.e. a sum of step functions will
not adequately describe the phase shift function Q. This is true even
after the widths of resonances are included.
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Fig. 1. (Color online) Landscape of S-matrix phase ln detS(
√
s ) of the ππ,KK̄

coupled-channel system on the energy sheets I and II. Color signifies the value of
the phase angle and contour lines specify magnitudes of ln |detS|. Poles (roots)
are characterized by the clockwise (anti-clockwise) rotation of the color phase and
by a large, positive (negative) values of ln |detS| reflected in the contour lines. The
physical line is identified with the real line in sheet I (Re (

√
s ) + i 0+).

0.2 0.4 0.6 0.8 1.0 1.2 1.4
 sqrt(s) (GeV) 

0.5

0.0

0.5

1.0

 p
ha

se
 sh

ift
 / 

 

this model
improved HRG
Ishida et al. (pipi)
(500)

f0(980)
BG

Fig. 2. The effective phase shift extracted from the coupled-channel model [4],
compared to the result of the model in Ref. [14]. For the latter, the decomposition
of its components: σ(500), f0(980) and a repulsive background, is also displayed.
The improved HRG scheme is from Eq. (9).
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To describe the phase shift, one can construct an HRG-like scheme,
but selecting only the relevant poles and roots. For energy below the
KK̄ threshold, we pick

detS(E) ≈ (r1− E)(r2− E)

(p1− E)(p2− E)
. (9)

Compared to the bare scheme (5), the (subtractive) correction would
appear as a repulsive force. See Fig. 2.

4. In the work of Ref. [14], a repulsive background is introduced, in ad-
dition to the resonant shifts of σ(500) and f0(980), to reproduce the
experimental phase shift. In the current model, such a subtractive cor-
rection comes from the mismatch between r1 and p1, giving a weaker
phase motion. In both models, we see the suppression of σ(500) within
the I = 0 channel. A repulsive component is also expected from the
t- and u-channel exchanges in chiral perturbation theory.

Despite the different decomposition into resonances and backgrounds,
both models roughly capture the experimental phase shift. This illus-
trates a powerful feature of the method: when the relevant experimen-
tal results are available to quantify the DoS, the thermal observables
computed become model independent.

4. Going further

The S-matrix framework is flexible in that the degrees of freedom (DoFs)
used in the Hamiltonian can be different from those appearing in the S-matrix
(open channels). In particular, resonances and other dynamically generated
states, are taken into account only via the latter. Such a separation would
become interesting when quarks and gluons DoFs are employed in the Hamil-
tonian. Presumably quarks and gluons are forbidden in the open channels,
and at low temperatures, probing low energies due to the Boltzmann sup-
pression, should yield a gas of pions. Realizing this in the S-matrix approach
could yield novel insights into describing the thermal properties of interact-
ing hadrons and eventually the deconfinement phase transition in QCD.
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