Vol. 14 (2021) Acta Physica Polonica B Proceedings Supplement No 3

MANAGEMENT OF THE MONTE CARLO
SIMULATION PROCESS IN THE MPD EXPERIMENT
ON THE NICA CLUSTER*

LUKASZ SAWICKIT, JAKUB ZIELINSKI
Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
KRZYSZTOF DYGNAROWICZ

Faculty of Electronics and Information Technology
Warsaw University of Technology, Warsaw, Poland

(Received February 1, 2021)

This paper shows the development of software aimed at automatization
of the process of Monte Carlo simulation of event, and particle generation
and propagation in Au—Au collisions in the MPD detector. It contains
information about the tools used and a description of the software func-
tioning.

DOI:10.5506 / APhysPolBSupp.14.617

1. Introduction

During an internship at the Joint Institute for Nuclear Research [1] at
the Laboratory of High Energy Physics, we created a software for the need of
management of the generated data. These data were simulations of heavy-
ion collisions inside the MPD (Multi-Purpose Detector) located at the NICA
[2] (Nuclotron-based Ion Collider fAcility).

The major problem during the practice was to make the process of event
generation and simulation of particles as automated as possible. We were
running simulations and event generations for Au—Au collision in the NICA
collider range of energy. It meant having to solve problems with marking,
storing and using all the generated data.

This problem can be divided into four separate steps. Firstly, event
generation, secondly event reconstruction using macros, then checking the
correctness of received files and future data analysis.

* Presented at NICA Days 2019 and IV MPD Collaboration Meeting, Warsaw, Poland,
October 21-25, 2019.
 Corresponding author: 1.saw99@outlook.com

(617)

618 L. Sawicki, J. ZIELINSKI, K. DYGNAROWICZ

2. Software

For this purpose, we had a NICA computing cluster with about 7 PB disc
space to use at our disposal. Responsible for event generation was UrQMD 3.4
[3] (Ultra-relativistic Quantum Molecular Dynamics) Monte Carlo simula-
tion package. By using it, we generated most of our gathered data. In order
to compare simulation models, we generated a small amount of data by using
the vHLLE package (A 3+ 1 dimensional viscous hydrodynamic code for rel-
ativistic heavy-ion collisions). Event generations were executed for Au-Au
collision at the energy from 4 GeV to 11 GeV. On the cluster, we had MP-
DRoot framework available containing MPD detector models. By using this
framework, we were able to simulate the transition of particles created in the
collision through the detector and we were able to see detector’s response to
this event.

2.1. Software operating principle

For the purpose of realization of each step, we made a few Bash scripts
and programs written in C4++4. The NICA cluster shares a folder named
“data”, its size is about 7 PB without a quota limit. Thanks to the access
to this folder, we were able to easily collect data coming from the event
generation and detector response into one place. The full path to this folder
is /eos/nica/mpd/data. In this location, every simulation model and each
energy have their separate folder. Simulations for the UrQMD model were
carried out for energies at the center-of-mass frame /syy =4 GeV, 7 GeV,
9 GeV and 11 GeV. For the vHLLE model, we were making simulations
only for 7.7 GeV collisions, due to it being the only possible energy from
NICA collider’s energy range we can choose from. The event generation
and detector response simulation process were working according to this
algorithm:

— In program’s config file set a number of events in one generation.

— Run program with an argument of energy and number of jobs to run
(in the vHLLE model case we do not pass energy as an argument,
because it is set in the config file).

— Program makes in the data folder a new folder with set energy and
simulation model (if this name already exists, this step is skipped).

— Inside that folder, for every running job, the program is creating a
folder with the name of running job. It is a unique JOBID number
given by the queue system working on the cluster.

— Necessary macros and folders are placed in the created folder.

— Program runs event generation.

Management of the Monte Carlo Simulation Process in the MPD ... 619

— Output file from every generation is passing through runMC.C macro
which is simulating detector’s response to a generated event and
through reco.C macro which can reconstruct the event from infor-
mation given by the previous macro. The final file ready for analysis
is mpddst.root

The user can only set energy and the number of events for one simulation in
the config file. The rest of the parameters is the same in every simulation.
The user can modify the rest of the parameters by applying changes to the
source code. However, it is then necessary to change names of folders, within
the code. This is because it was our first attempt to create a program for
running simulations in one command. We used a lot of the same parameters
on purpose in order to collect as much data as possible for analysis. The
source code and installation instruction are available on GitHub. The queue
system on NICA cluster allows to run 200 jobs parallelly per user, which
limited the possibility of producing data.

2.2. Data correctness checking

The next stage is checking the correctness of generated files. Due to
the complexity of the content of each file, file validation has been limited to
checking if a file with the correct name exists and if its size on the disk is
large enough. The correct size for every energy and number of events in one
simulation is calculated by checking the size of a few generated files with
various energies and the number of events in one simulation. Based on this,
we can determine the right size of each file. The program knows the number
of events in each simulation, because it is set in the config file (inputfile).
It turns out that the file size is practically constant, and damaged files are at
least a few percent smaller than the correct size. Following this, the program
is able to determine which simulations ended correctly, and in the case of
incorrect ones, it is able to determine in which place the error occurred.
Paths to valid files are placed in a txt file, which is used in further collision
analysis.

3. Summary

During the 2-month internships, most of the time was devoted to learning
how to use the cluster. First weeks were spent on writing the program and
fixing its errors. The last 3 weeks of practice were devoted to data generation
and analysis. During this time, we successfully reconstructed and analyzed
2,120,000 events. Together they had a size of 60 TB. The numbers of the
reconstructed events for each energy are shown in Table I.

620 L. Sawicki, J. ZIELINSKI, K. DYGNAROWICZ

Number of reconstructed events for each energy.

UrQMD

vHLLE

4 GeV

7GeV | 9GeV | 11 GeV

7.7 GeV

Reconstructed events

203600 | 448346 | 593851 | 721652 | 151393

TABLE I

A typical job is 200 events for one simulation, this value was chosen
because, by trial and error, it was noticed that a larger number of events
results in more simulations ending with errors, and a smaller number of
events reduces the amount of data produced during the day. 200 events were
accepted as the most optimal number. Generation of so many events in one
job and their reconstruction took about 24 h. Over 2 million events in the
cluster were generated in 3 weeks. Using your own laptop for this would
take a little over 10 years.

All data and images come from the presentation given at the confer-
ence. You can download the software from GitHub https://github.com/

Lukaszz99/work

REFERENCES

[1] JINR, http://www.jinr.ru/about-en/, accesed: 28-08-2019.

[2] NICA Collaboration (A. Sissakian, A.S. Sorin), J. Phys. G: Nucl. Part.
Phys. 36, 064069 (2009).

[3] S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).

https://github.com/Lukaszz99/work
https://github.com/Lukaszz99/work
http://www.jinr.ru/about-en/
http://dx.doi.org/10.1088/0954-3899/36/6/064069
http://dx.doi.org/10.1088/0954-3899/36/6/064069
http://dx.doi.org/10.1016/S0146-6410(98)00058-1

	1 Introduction
	2 Software
	2.1 Software operating principle
	2.2 Data correctness checking

	3 Summary

