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The exclusive 12C+p → 10A + pp + N reaction, where the 12C beam
at the energy of 4 GeV/nucleon interacts with the proton target and as a
result, one proton is knocked-out from a short-range correlated NN pair
in 12C, was measured recently by the BM@N Collaboration. This reaction
is considered here by analogy with the theory of quasi-elastic knockout
of fast deuterons from nuclei (p,Nd) using the translationally-invariant
shell model with short-range NN correlations. The initial- and final-state
interaction effects are estimated in the eikonal approximation using the
Glauber model for elastic N–10A scattering.
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1. Introduction

The idea of the fluctuation of nuclear density in the ground state of nu-
clei was suggested by Blokhintsev [1] after observation of the quasi-elastic
knockout of fast deuteron from nuclei by protons [2]. The NN pairs at the
small relative distances rNN < 0.5 fm, i.e. with high relative momentum
qrel > 0.4 GeV/c and almost zero momentum of the center-of-mass of the
pair kcm, were called later on as short-range correlated (SRC) pairs [3]. Prop-
erties of the SRC pairs are studied using electron beams in hard exclusive re-
actions A(e, e′pN), assuming the simplest mechanism of quasi-elastic knock-
out of the nucleon from the SRC NN pair when the second nucleon is a spec-
tator. The main results obtained from this study are the following. The SRC
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pairs do exist in nuclei. Distribution n(p1,p2) over momenta p1 and p2 of
nucleons in the SRC pair is factorized as n(p1,p2) = CA ncm(kcm)nrel(qrel),
where ncm(kcm) is the distribution over the momentum of the center-of-
mass NN pair, and nrel(qrel) is the distribution over the internal relative
momentum qrel. The internal distribution nrel(qrel) at high |qrel| is a uni-
versal function close to that for the momentum distribution of nucleons in
the free deuteron. The constant CA depends on the type of nucleus A. The
contribution of the pp SRC pairs is by a factor of about 20 smaller than for
the pn pairs. This is caused by the tensor forces which are absent in the
spin-zero states and acting only in the spin-1 NN states. A review of this
study can be found in Ref. [4].

It is important to confirm these observations by reactions with other
probs. For this aim the exclusive 12C+p → 10A + pp + N reaction was
studied recently at BM@N in JINR [5] using the 12C beam at the energy of
4 GeV/nucleon interacting with the hydrogen target to probe the SRC pairs
in the 12C. In theoretical analysis [6, 7] of the SRC effects, in this reaction a
properly modified approach developed earlier was used (see Ref. [8] and ref-
erences therein) to describe the quasi-elastic knockout of fast deuterons from
the light nuclei 12C and 7,6Li by protons in the reactions (p, pd) and (p, nd) at
the proton beam energy of 670 MeV [9–11]. As in Ref. [8], the spectroscopic
amplitudes for NN pairs in the ground state of the 12C nucleus are calcu-
lated here within the translation-invariant shell model (TISM) with mixing
configurations. For the internal momentum distribution, the nrel(qrel), of
the squared deuteron (or singlet deuteron) wave function for the CD Bonn
NN -interaction potential was used. Relativistic effects in the sub-process
p{NN} → pNN of quasi-elastic knockout of nucleon from the SRC pair are
taken into account in the light-front dynamics [12]. We found that the c.m.
distribution, ncm(kcm), of the NN clusters obtained within the TISM and
used in [11, 13] to describe the (p,Nd) data [11] has to be sizable modi-
fied [14] to describe the kcm distribution of the SCR NN pairs measured
in the electron data [15]. On the other hand, the ratio of the spin-singlet
to spin-triplet pairs {pp}s/{pn}t calculated within this approach [14] is in
agreement with the existing data [16].

Calculations [6, 7, 14] were performed in the plane-wave impulse approx-
imation (PWIA). In Ref. [5], the BM@N data in question are considered as
unperturbed by the initial- and final-state interaction. To check this state-
ment, we estimate here the initial- and final-state interaction effects within
the eikonal approximation using the Glauber model for the N–10A elastic
scattering. Since the effects of the detector acceptance were not eliminated
from the data [5], a direct comparison with the presented theory is hardly
possible. Therefore, we perform below mainly a comparison between the
PWIA and distorted wave impulse approximation.
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2. Elements of formalism

Due to the contribution of the rescatterings, the transition matrix ele-
ment of this reaction is modified as compared to the impulse approximation
in such a way that the wave function of relative motion of the c.m. of the
NN pair in respect to the c.m. of the residual nucleus B, ψνΛ(kcm), where
ν and Λ are the number of oscillator quanta and orbital momentum, respec-
tively, is modified and takes the following form (see Ref. [8] and references
therein):

ΦνΛ(kcm) = ψνΛ (kcm) +
i

4πkp0A

∫
d2qp0FpB

(
qp0
)
ψνΛ

(
kcm − qp0

)
+
∑

j=1,2,3

i

4πkpjB

∫
d2qpjFpB

(
qpj

)
ψνΛ

(
kcm − qpj

)
−
∑

j=1,2,3

(4π)−2

kp0AkpjB

∫
d2qp0d

2qpjFpB
(
qp0
)
FpB

(
qpj

)
ψνΛ

(
kcm − qp0 − qp1

)
− (4π)−2

kp1Bkp2B

∫
d2qp1d

2qp2FpB
(
qp1
)
FpB

(
qp2
)
ψνΛ

(
kcm − qp1 − qp2

)
− (4π)−2

kp1Bkp3B

∫
d2qp1d

2qp3FpB
(
qp1
)
FpB

(
qp3
)
ψνΛ

(
kcm − qp1 − qp3

)
− (4π)−2

kp2Bkp3B

∫
d2qp2d

2qp3FpB
(
qp2
)
FpB

(
qp3
)
ψνΛ

(
kcm − qp2 − qp3

)
−

∑
l,i,j=0,1,2,3

i(4π)−3

kplBkpiBkpjB

∫
d2qpld

2qpid
2qpjFpB

(
qpl
)
FpB

(
qpi
)
FpB

(
qpj

)
×ψνΛ

(
kcm − qpl − qpi − qpj

)
. (1)

Here, kpiB (kp0A) is the relative momentum in the system of the final nucleon
pi (i = 1, 2, 3) and nucleus B (initial proton p0 and nucleus A). FNB(q) in
Eq. (1) is the amplitude of elastic scattering of the nucleon N off the nu-
cleus B. This amplitude is calculated using the Glauber theory and as we
checked, well describes the experimental data on a differential cross section
of the elastic p10B scattering at energies of 1 GeV in the forward hemisphere.
The first term on the right-hand side of Eq. (1) is the PWIA, the next two
terms come from the single NB scatterings, other four terms with double
two-dimensional integrals over transverse momenta qi and qj account for
double NB scattering, and the last term accounts for triple re-scatterings.
The sum of all terms in Eq. (1) is the distorted wave impulse approximation
(DWIA) result. According to arguments given in Ref. [17], the term with
four rescatterings has to be zero in the eikonal approximation and we drop
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this term here. As was noted in Ref. [8], Eq. (1) can be applied for calcu-
lation of the ISI@FSI effect in the case of collinear kinematics, for example,
for quasi-elastic knockout of fast deuteron clusters by protons (p, pd), when
momenta of initial and final particles are directed along the beam. In the
A(p, 2pN)B reaction, the kinematics is broader and, therefore, we use this
formalism only for a rough estimation of the ISI@FSI effects. On the other
hand, the Feynmann diagram formalism with the generalized eikonal ap-
proximation (GEA) developed for the pd→ ppn reaction (see Ref. [17] and
references therein) allows to account for ISI@FSI effects at realistic kinemat-
ics. We made the necessary generalization of the formalism of Ref. [17] to
the 12C(p, 2pN)10A reaction under restriction by the single NB-scattering
approximation and made numerical estimations on this basis (the detailed
results will be published separately).

3. Numerical results

For numerical calculations, we use the harmonic oscillator wave function
ψνΛ(pB) with ν = Λ = 0 with the oscillator parameter corresponding to
the c.m. momentum distribution ncm(pB) = |ψνΛ(pB)|2 in the 3D Gaussian
form with σ-parameter equal 150 MeV/c that corresponds to the experi-
mental data on the 12C(e, epp) [15] and 12C(p, 2pN)10A [5] reactions. In
this case (ν = 0), the ratio of the PWIA and DWIA cross sections R is
equal to R = |Φ00(pB)|2/|ψ00(pB)|2. The exclusive 12C(p, 2pN)10B reaction
is determined by 8 independent kinematic variables, for example, 3-mo-
menta of the residual nucleus pB and the recoil nucleon–spectator pr in the
p〈NN〉 → pNNr subprocess and two angles of the 3-momentum of the scat-
tered proton θsc, φsc. The results for dependence on the azimuthal angle of
the scattered proton φsc are shown in Fig. 1, where the dashed line corre-
sponds to accounting for single NB scattering and the solid line shows the
sum of single and double scattering.

One can see from Fig. 1 that in this approach the ISI and FSI effects
decrease the cross section by the factor of ∼ 2, but this suppression factor
does not depend on φsc. We can show that the same result is obtained for
the other six independent kinematic variables. The only exception is the de-
pendence on the absolute value of the residual nucleus momentum pB = kcm
shown in Fig. 2. In this case, one can see that the ratio R = DWIA/PWIA
decreases with increasing momentum pB up to 300 MeV/c. Further increase
of R with increasing pB at pB ≥ 300 MeV/c is non-measurable, since the
differential cross section falls quickly with an increase of pB.

One should note that within the Feynmann diagram formalism with GEA
the obtained here results for the ratio R, which are shown by dash-dotted
lines in Figs. 1 and 2, are in qualitative agreement with these observations:
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for all kinematic variables, except pB, the ratio R is constant of ≈ 0.8. The
pB dependence of R is also similar to that obtained within the first approach
used here.
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Fig. 1. The PWIA to DWIA ratio for the distribution over the azimuthal an-
gle φsc of scattered proton in the 12C(p, 2pN)10A reaction at pr = 0.65 GeV/c,
pB = 0.1 GeV/c, φB = π, θB = φr = θr = θsc = 0: 1 — single scattering (SS),
2 — sum of the SS and double scattering (DS); line 3 shows the result for the single
scattering obtained within the GEA formalism.
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Fig. 2. The same as in Fig. 1, but at φsc = 0 for distribution over the residual
nucleus momentum pB in the rest frame of the 12C nucleus.
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4. Conclusion

As was shown here by our calculations in two different approaches, the
rescatterings of the initial proton and final nucleons of the residual nucleus in
the 12C(p, 2pN)10A reaction diminish homogeneously the differential cross
section and the suppression factor does not depend on kinematic observables
if the absolute value of the momentum of residual nucleus is not changing.
To some extent, this result confirms and explains the conclusion made in
Ref. [5] about non-importance of initial- and final-state interactions in the
12C(p, 2pN)10A reaction studied at BM@N. A similar question about rescat-
terings in the elementary subprocess p〈NN〉 → pNN will be considered
separately.
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