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A three-body model α+ 2N for 6He is applied using the wave function
obtained within the stochastic variational method based on the Gaussian
basis. An explicit expression is obtained for the density distribution func-
tion of nuclear matter. The elastic scattering of 6He by α-particles is stud-
ied in detail. By employing the calculated density distribution functions,
the folding interaction potentials are built. The resulting folding potential
is applied to calculate the differential cross sections of elastic scattering
in the framework of the optical model. In order to treat the excess ex-
perimental cross sections at the large angles, the mechanisms of two nu-
cleon transfer are proposed. With the proposed theoretical approach, good
agreement in the comparison of calculated differential cross sections with
the experimental data is demonstrated. It is also shown that the two-step
transfer mechanisms of two nucleons predominate over one-step transfer
mechanisms.
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1. Introduction

In the light nuclei, the cluster structure can often clearly manifest itself
in the dripline region of the nuclear map. These series include such nuclei
as 6He, 11Li, 12Be, and other exotic nuclei. However, there are also stable
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nuclei with apparent cluster structures. These include such nuclei as 6Li,
9Be, 11B, and others. Numerous experimental data [1–3] allow us to treat
such nuclei as multi-cluster systems, including tightly bound α-clusters and
valence nucleons. For these nuclei, the relative motion of internal subsystems
determines the property and mechanisms of nuclear reactions. The simplest
nucleus with a cluster structure as 6He is ideally suited for consideration
within the framework of the three-body model. Moreover, it should be noted
that the interaction of pairs inside these nuclei is well known, which can be
used in constructing a solution to the Schrödinger equation. An important
factor is also the number of scattering experiments conducted to study the
structures of these nuclei.

There are many theoretical approaches [4–6] devoted to studying the
structure of exotic nuclei. In particular, the nuclear excitation function for
light exotic nuclei is well reproduced by the No Core Shell Model (NCSM)
[7, 8]. The method uses a one-particle basis function of the harmonic oscil-
lator, realistic NN , NNN interactions. This method is reduced to solving
the A-nucleon Schrödinger equation on the basis containing all possible con-
figurations of A-nucleon oscillator functions. However, the size of the basis
grows rapidly with the number of nucleons, the reliability of the NCSM
model calculations decreases in the case of heavy nuclei. At present, the
capabilities of modern computational machines make it possible to perform
calculations with sufficient accuracy for nuclei with masses A ≤ 16.

The experimental data of elastic scattering of 6He +α is available at the
laboratory energy of 151 MeV [9, 10]. These experimental data can be used
to show the elastic transfer phenomenon through the two-neutron transfer
between the two α-core. The main motivation of these studies was to probe
the relative importance of the “di-neutron” and “cigar” configurations of the
valence neutrons in the 6He ground state. The data show the backward
angle rise in the cross section. Usually, it is considered as an indication of
characteristics of elastic transfer. The DWBA analysis using the 6He wave
function built on hyper-spherical harmonics [6] showed good agreement with
the backward angle data. Consequently, it is concluded that the di-neutron
configuration dominates the 6He ground state wave function. More detailed
study of α + 6He scattering data has been carried out in Ref. [11] in the
framework of the Coupled Reaction Channels (CRC) method.

In the present work, the three-body model α + 2n and its role in the
mechanisms of nuclear reactions is investigated. Mostly, the features of
the intrinsic structure of colliding nuclei in the interaction potentials are
neglected, and taken in a phenomenological way, like in Gaussian form,
or in the form of the Woods–Saxon potential. In such cases, one could
take the potential in a more realistic shape of colliding nuclei. To describe
direct nuclear reactions, we proceed from the natural shape of colliding nuclei
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within the three-body model. Therefore, the motivation for this work is
to minimize the number of free parameters in the calculations of nuclear
reactions as much as possible, and to use the density distribution functions
of nuclear matter based on the three-body model.

2. Three-body wave function

Consider a three-body system containing k, p, and q particles. A total
wave function of this system with total spin J and spin projection M can
be represented as a sum of components

ΨJM (xk,yk) =
∑
γ

ΨJMγ (xk,yk) . (1)

The vector xk is for the relative distance between the pair of particles pq
and k, and yk is the vector of the relative distance between the center of
mass of the pair pq and the particle k (see Fig. 1). The designation γ is
equivalent to the set of quantum numbers λlLS. The momenta λ, l are the
orbital momenta conjugated to the coordinates xk, and yk, respectively, L is
the total orbital momentum of the system, and S is the total spin of the
three-body system. The each component defines spatial and spin parts as
follows:

ΨJMγ (xk,yk) =
[
Φ
(λ,l)
L (xk,yk)⊗ χS(k, pq)

]
JM

=
∑

MLMS

(LMLSMS |JM)Φ
(λ,l)
LML

(xk,yk)χSMS
(k, pq) , (2)

where χSMS
is the spin function.
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Fig. 1. The schemes of Jacobi coordinate sets for the three-body system.

The spatial part of the wave function is chosen to be multidimensional
Gaussian functions of the form of

Φ
(λ,l)
LML

(xk,yk) = xλyl
∑
i

Ci exp
(
−α(k)

i x2k − β
(k)
i y2k

)
× [Yλ (x̂k)⊗ Yl (ŷk)]LML

. (3)
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Here, the coefficients α(k)
i , β(k)i , and Ci are the parameters of the wave

function expansion. In particular, Ci is found as a result of solving the
generalized eigenvalue problem.

3. Density distribution functions

The density distribution function of nuclear matter within the three-body
model can be expressed as follows:

ρ(R) =
∑

ι={kpq}

ρ(ι)(R) , (4)

where ι = {k, p, q}. The density function of a cluster is given by

ρ(ι)(R) =
〈
ΨJMtot

∣∣ ρ̂i ∣∣ΨJMtot

〉
. (5)

Here, the operator of density is defined as

ρ̂i ≡

δ
(
yi − y

(i)
0 R

)
for ith nucleons ,

ρα

(
yi − y

(i)
0 R

)
for ith α-clusters ,

(6)

where δ(z) — delta function, ρα(r) — internal density distribution function
of α-cluster

ρα(r) = ρ0 exp
(
−γ0r2

)
. (7)

The α-particle density function is normalized to unity with the following
parameters:

γ0 =
3

2

1

〈r2α〉
, ρ0 =

(γ0
π

)3
2
. (8)

Here, the square root of 〈r2α〉 — r.m.s. matter radius of α-particle, which
equals 1.461 fm [12].

Provided the cluster k is α-particle, a relevant matrix element has the
form of〈

φJMγi (k, pq)
∣∣ ρα (yk − y(k)0 R

) ∣∣φJMγ′j (k, pq)
〉

= ρ0CiCj exp
(
−γ0R2

) ∫ ∫
dxkdyk x

2
k y

2
k ϕ

(λ,l)
i (xk, yk) ϕ

(λ,l)
j (xk, yk)

× exp

(
−γ0y(k)0

2
y2k

)
i0

(
2γ0y

(k)
0 ykR

)
δγγ′ , (9)

where il(x) is the modified spherical Bessel function of the first kind.
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The density function of the α-particle k is built as follows:

ρ(αk)(R) =
∑
γ

ρ(αk)
γ (R) , (10)

where

ρ(αk)
γ (R) = 4πρ0 exp

(
−γ0R2

)∑
ij

CiCjI
(

2λ+ 2, 12α
(k)
ij

)
×I
(
l, 0, β

(k)
ij + 2y

(k)
0

2
γ0, 2γ0y

(k)
0 R

)
. (11)

Here, I(n, l, v, |w|) is given by (see [13], p. 270)

I(n, l, v, |w|) =
π

2

(2n)!!|w|l

vn+l+3/2
exp

(
w2

2v

)
Ll+1/2
n

(
−w

2

2v

)
, (12)

where, Ll+1/2
n (x) is the associated Laguerre polynomial.

Let us turn to the density functions of q particles. In order to calculate
the matrix elements for these particles, one must switch basis functions
into (q, kp) Jacobi coordinate set. In particular, the matrix element for the
nucleon q may be represented in the form of〈

φJMγi (k, pq)
∣∣ δ (yq − y(q)0 R

) ∣∣φJMγ′j (k, pq)
〉

=
∑
γ̃γ̃′

Aλ̃
′ l̃′λ′l′

Qj
Aλ̃l̃λlQi

〈
φJMγ̃i (q, kp)

∣∣ δ (yq − y(q)0 R
) ∣∣φJMγ̃′j (q, kp)

〉
, (13)

where Aλ̃′ l̃′λ′l′Qj
is the transformation coefficient of the basis function (see de-

tails in Ref. [13]). The density function of the nucleon q may be represented
as follows:

ρ(Nq)(R) =
∑
γ

ρ
(Nq)
γ (R) , (14)

where the component γ is

ρ
(Nq)
γ =

∑
γ̃ij

Aλ̃l̃λlQij

2
CiCj

(
y
(q)
0

)2l̃
R2l̃ exp

(
−1

2y
(q)
0

2
β
(q)
ij R

2

)
I
(

2λ̃+ 2, 12α
′(q)
ij

)
.

(15)
Here, the integral I(λ, α) is given by

I (λ, α) = 21+λ
Γ (1 + λ)

(α)1+λ
, (16)

where Γ (x) — the Gamma function.
Density functions for the nucleon Np are obtained in a similar way as for

density functions for the nucleon Nq.
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4. Results and discussions

4.1. The density functions of nuclear matter

On the basis of the three-body wave function (1), the nuclear matter
density distributions are calculated for 6He in the ground state. The results
are shown in Fig. 2. The plotted density functions are normalized to their
own atomic masses.
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Fig. 2. The nuclear matter density distribution of 6He with the cluster component
contributions.

A distinctive feature of the obtained results is in the extended tail of the
density function. This is caused by the properties of the valence nucleons in
the three-body system. In particular, the density function of the core ρα(r)
tends rapidly to zero as the radius r increases in comparison with the nucleon
density function ρN . Another point of behaviour of the density function is
a maximum in the density functions ρN at r ' 1.8 fm. This character of
function explains that the valence nucleons are moved apart from the c.m.

A comparison of the total density function ρ(r) for 6He with the density
function calculated in the framework of the Large-Scale Shell-Model (LSSM)
(for more, see Ref. [14]) is illustrated in Fig. 3. Both functions are in good
agreement. However, starting from r ' 5.0–10.0 fm, the three-body model
is slightly overestimated.
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Fig. 3. The comparison of the total nuclear matter density distribution function
within the three-body model (3BM) with the LSSM calculations (LLSM) [14] for
6He.

4.2. 6He+ α reaction

The differential cross section of elastic scattering for the 6He + α nu-
clear reaction has been calculated within the framework of the OM. The
calculations were carried out by means of the FRESCO code [15].

The optical potential for the 6He + α system was obtained within the
DF model using the density functions of nuclear matter. For the NN -force
the density-dependent DDM3Y-Paris potential was chosen [16]. The DF
potential may have terms depending on the interaction of projectile with
the clusters of the three-body system. In particular, for the 6He +α system,
the DF potential can be defined as

V DF(r) = V DF
α+α(r) + V DF

2N+α(r) . (17)

The calculated results are demonstrated in Fig. 4. The folding potentials
of α-core and two valence nucleons with the projectile 4He show specific
feature of the interaction. The potential of the α-cluster with the projectile
provides a strong central part, while the interaction with halo neutrons is
localized at the peripheral region.

The obtained potential was used to calculate the differential cross section
for elastic scattering of 6He by α-particles at the energy of Elab = 151 MeV.
As the real part of the optical potential, the folding potential with the pa-
rameter Nr was used. For the imaginary part of the optical potential, we
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Fig. 4. The folding potential V DF calculated by means of the density functions of
6He.

used again the folding potential, but with the parameter Ni. The corre-
sponding results are shown in Fig. 5. The potential parameters used in the
OM calculations are presented in Table I. The advantage of folding potential
is in a less number of adjustable optical parameters. Instead of six parame-
ters fitted in the case of Woods–Saxon potentials [10], the folding potential
allows to reproduce data within two parameters.

TABLE I

Parameters of the double folding potential used in OM, and CRC calculations for
the 6He + α nuclear reaction.

Nr Ni χ2/N

DF-6He Nr = 1.4 Ni = 0.5 7.32

Theoretical curves could show a good result in describing the experi-
mental data on elastic scattering within the framework of the optical model.
However, this is true only at the front scattering angles, while the backscat-
tering angles are far from a description of optical calculations. Therefore, in
order to explain the disagreement, we propose the following transfer mech-
anisms of two nucleons: the one-step and two-step transfer. Taking into
account these mechanisms, the differential cross section can be written as
follows:

dσ

dΩ
(θ) = |f(θ)OM(θ) + ftr(θ)|2 , (18)

where f(θ)OM is the scattering amplitude of elastic channel, ftr — amplitude
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of the transfer mechanisms, which approximately is

ftr(θ) ≈ fone(π − θ) + ftwo(π − θ) . (19)

Here, fone — an amplitude of finite-range transfer which may be calculated
within the DWBA method, ftwo — an amplitude of the two-step transfer
mechanism (see, i.e. [15, 17]).

Obtained calculation results for the differential cross section of the elas-
tic transfer were carried out within the framework of the CRC method [15].
Potential for the input and output channels was chosen to be the double fold-
ing potential 6He-DF. The potential for the intermediate channel was taken
as the optical potential with global optical parametrizations for α-particles
[18]. Trial calculations have shown that the results depend insignificantly
on the selected potential for the intermediate channel. The wave function
of the bound states was chosen by fitting the potential depth to the binding
energy of the composite systems. In particular, the binding energy of one
neutron with 6He was chosen to be 1.8 MeV, neutron with 5He — 0.1 MeV,
and two neutrons with α — 0.9 MeV.

The results of the CRC calculations for the elastic transfer are shown in
Fig. 5. The elastic collision mechanism prevails at the forward scattering
angles. Starting from the angle 90◦, the contribution to the cross section
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Fig. 5. (Colour on-line) The cross sections of the elastic channel with the few
possible reaction mechanisms: elastic scattering (solid gray), one-step transfer of di-
neutron (dashed gray), two-step transfer of di-neutron (dotted gray), and coherent
sum (solid black/blue). Experimental data from [10].
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is mainly caused by the two-step transfer mechanism. It is worth noting
here that two neutrons have the 2S0 configuration, which, possibly, leads
to an oscillatory cross section. One magnitude less is the contribution of
the sequential transfer of di-neutron. In this case, both neutrons have 1P 3

2

configuration. For the best reproduction of the experimental data, the SA
of di-neutrons was taken as A00

2S0
≈ 1.0. The extracted value corresponds

with the value from Refs. [10, 11].
Thus, it was possible to achieve good agreement between the calculated

differential cross section, using the double-folding potential DF-6He and the
proposed transfer mechanisms, with the experimental data [10].

5. Conclusion

In the framework of the double folding model, the interaction potential
α+ 6He has been calculated. It should be pointed out that the large diffuse-
ness of the double folding potentials is caused by the valence nucleons. The
potential built on the three-body density functions was used to calculate the
differential cross sections of elastic, and nuclear transfer reactions.

The nuclear 6He + α reactions at the laboratory energy of 151 MeV are
excellent tools in terms of the theoretical study. By using them, we could
extract the optical potential parameters, the spectroscopic information of
the three-cluster configurations. The spectroscopic amplitude of di-neutron
in 6He is consistent with the spectroscopic information given in Refs. [10, 11].

The experimental data on the elastic scattering of α-particles by 6He
demonstrate a significant growth of cross section at backward angles. This
kind of behaviour is characterized by the contribution of the elastic transfer
channel. The analysis based on the CRC calculations shows that the major
contribution to the elastic transfer cross section is a result of the di-nucleon
transfer channel. The two-step transfer is one order of magnitude lower in
the case of 6He+α. This confirms the validity of the three-body model, and
the analysis is compatible with the conclusions of other authors of [10, 11].
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