
Vol. 14 (2021) Acta Physica Polonica B Proceedings Supplement No 4

TIME-OF-FLIGHT MASS ANALYZER
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The motion of charged particles emerging from a point source located
in the middle plane of the transaxial mirror is considered. It is shown that
as a result of reflection in a three-electrode transaxial mirror, a parallel
volume beam can be formed. To calculate the trajectories of particles, the
dimensionless Newton equations and analytical expressions for the potential
are used, which describe the field of a three-electrode transaxial mirror with
good accuracy. Two modes of vertical beam focusing are calculated. The
transaxial mirrors can be used to create highly efficient time-of-flight mass
spectrometers.
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1. Introduction

Recently, time-of-flight multi-reflective mass analyzers have been suc-
cessfully used in various fields of science [1]. In such analyzers, electrostatic
mirrors are used, in which it is possible to carry out spatial focusing of
the beam in two directions and, at the same time, time-of-flight focusing in
terms of ion energy, which makes it possible to achieve mass resolution of
Rm > 1 000 000 with high sensitivity and speed of analysis. In [2], it was pro-
posed to use such a mass analyzer for precision measurement of the masses of
superheavy elements resulting from the bombardment of neutron-rich target
nuclei with heavy ions. Accurate measurement of the masses of such nuclei
with Z ≥ 115 may be the key for studying their nuclear structure.
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It is known that when calculating the trajectories of charged particles in
electrostatic mirrors, mathematical difficulties arise due to the fact that in
the vicinity of the turning points, the radii of curvature of the trajectories
tend to zero. In this case, the slopes of the trajectories to the optical axis
and the relative spread of particle energies increase indefinitely [3, 4]. All
these difficulties remain aside if we integrate not the trajectory equations,
but Newton’s equations with respect to the time of motion of the parti-
cles. Numerical integration of Newton’s equations is greatly simplified if the
analytical expressions for the potentials describing the electric fields of the
mirrors are known. To find the potentials describing the electrostatic fields
of corpuscular-optical systems (COS), as a rule, one has to solve the Dirich-
let problem for a scalar potential that satisfies the Laplace equation. The
potentials of the transaxial COS in the cylindrical coordinate system ρ, ψ, z
depend only on the variables ρ and z and satisfy the Laplace equation [5]

∂2ϕ

∂ ρ2
+

1

ρ

∂ ϕ

∂ ρ
+
∂2ϕ

∂ z2
= 0 . (1)

The most general method for solving the Dirichlet boundary value prob-
lem for equation (1) is the method of separation of variables. In this case,
the potentials are represented in the form of a series of Bessel functions [5].
However, these solutions are difficult to use for numerical calculations due
to poor convergence of the series. In [6–10], simple approximate analytical
expressions were found for the potential of a three-electrode transaxial lens,
which also describe the field of a transaxial mirror with good accuracy. Such
mirrors can be used, in particular, to create time-of-flight mass spectrom-
eters. The present work is devoted to the calculation of the properties of
such mirrors.

2. Analytical expressions for the potential of a transaxial mirror

A three-electrode transaxial lens or mirror consists of two parallel plates
cut by straight circular cylinders of radius R1 and R2, the axis of which
coincides with the axis z [9, 10]. Such a mirror is shown schematically
in Fig. 1. The figure also shows the accompanying Cartesian coordinate
system x, y, z. The origin of the Cartesian coordinate system is in the
median plane of the mirror, which coincides with the plane xy; V0, V1, and
V2 are the potentials of the electrodes, d is the distance between the plates.
The gaps between the electrodes are considered to be infinitely narrow. Far
from the edges of the plates, the potential ϕ depends only on the variables
ρ =

√
x2 + y2 and z.



Time-of-flight Mass Analyzer Based on Transaxial Mirrors 859

Fig. 1. Schematic representation of a transaxial lens and mirror.

Introducing dimensionless variables [9, 10]

η = ln
ρ

R
, ζ =

z

R
, (2)

where R =
√
R1R2, we obtain the following equation for the potential:

e−2η ∂
2ϕ

∂ η2
+
∂2ϕ

∂ ζ2
= 0 . (3)

The harmonic component F (η, ζ) of the electrostatic potential ϕ (η, ζ)
satisfies the two-dimensional Laplace equation and is a harmonic function of
the dimensionless variables η and ζ. Therefore, for the calculation F (η, ζ),
you can use the apparatus of the theory of functions of a complex variable
(TFCV) [11]. The analytical expressions obtained in this way for the poten-
tial give a good approximation for the potential ϕ (η, ζ), since it exactly
satisfies the given Dirichlet boundary conditions, and at ρ ∼= R (η = 0) they
satisfy the two-dimensional Laplace equation.

In cylindrical coordinates, analytical expressions for the electrostatic po-
tential of three-electrode transaxial lenses can be written in the following
form [7, 8]:

ϕ (ρ, z) = V2 + (V0 − V1)P1

(
ρ

R1
, z, R

)
+ (V1 − V2)P2

(
ρ

R2
, z, R

)
, (4)

where
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(
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Rk
, z, R

)
=

1

π
arctg

2 cos π
d z(

ρ
Rk

)πR
d −

(
ρ
Rk

)−πR
d

(k = 1, 2) . (5)

This rather simple analytical expression obtained for the electrostatic
potential of a three-electrode transaxial lens can also be used to calculate
transaxial mirrors.
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3. Dimensionless Newton equations

When studying the dynamics of a beam of charged particles in transaxial
mirrors, we will use the dimensionless Newton equations [6]. The equations
of motion of a charged particle with charge q and mass m in an electrostatic
field in dimensionless Cartesian coordinates x, y, z can be written in the
following form:

ẍ =
∂ϕ

∂x
, ÿ =

∂ϕ

∂y
, z̈ =

∂ϕ

∂z
. (6)

Here, the potential ϕ is measured in units V0; the unit of length is taken
as the distance d between the parallel planes of the transaxial mirror; dots
denote derivatives with respect to dimensionless time τ = t/τ0, where

τ0 = d

√
m

q V0
. (7)

The initial conditions for calculating trajectories when integrating equations
(6) can be set as follows:

x0 = a , y0 = b , z0 = c ; ẋ0 =
√

2(1 + ε)− ẏ20 − ż20 ,

ẏ0 =
√

2(1 + ε) sin α , ż0 =
√

2(1 + ε) sin β . (8)

Here, ε is the relative spread in energy at the entrance to the system;
angles α and β determine the angular spread in the beam in the horizontal
and vertical directions, respectively. When moving in the middle plane of
the mirror, where z0 = ż0 = 0, the angle α formed by the beam with the
axis x, which is the main optical axis of the mirror, is determined by the
expression

tgα =
ẏ0
ẋ0
. (9)

To calculate the derivatives of the potential included in equations (6), the
following formulas are used for the derivatives of the potential determined
by expressions (4) and (5):
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The given values of the derivatives were substituted into the differen-
tiated expression (4) and thus the right-hand sides of equations (6) were
determined.

4. Results of numerical calculation

Dimensionless Newton equations (6) were integrated numerically by the
four-point Adams method with an automatic choice of the integration step.
The accelerating points were found by the method of successive approaches
of Krylov. The relative accuracy of integration was chosen to be equal
10−8 ÷ 10−9.

Numerical calculations were carried out for a transaxial mirror, for which
R1 = 10d, R2 = 12d; V0 = 1, V1 > 0, V2 < 0. The unit of length was chosen
as d = 1 — the distance between the parallel planes of the transaxial mirror.
The initial conditions simulated a point source located in the area outside
the field in the median plane of the mirror at the point: x0 = 5, y0 = 0.4935,
z0 = 0. The axial trajectory was directed at an angle α ∼= 2◦ to the axis E,
by specifying the following initial conditions: ẋ0 =

√
2− ẏ20, where ẏ0 =

−0.0495. The volumetric beam was modeled by the following changes in
the initial conditions: |∆α| ≤ 0.004 rad, |ż0| ≤ 0.003, |ε| ≤ 0.01. With
the indicated changes in the initial conditions, the paraxial approximation
is still quite well satisfied.

The calculation results are shown in Figs. 2 and 3. Figure 2 shows the
behavior of the beam in projection onto the middle plane of the mirror,
and Fig. 3 — the behavior of the extreme trajectories of the beam in the
vertical direction. The potentials of the electrodes were selected so that
the linear focus in the vertical direction was located symmetrically to the
position of the source relative to the axis x. This situation was realized at
the following electrode potentials: V0 = 1, V1 = 0.51, V2 = −0.05545. The
time of flight of particles to the plane of the detector, which passes through
a point xk = x0 = 5 perpendicular to the axial trajectory of the beam, was
also determined. For the axial trajectory (ε = 0), the time of arrival at the
detector is equal to τd 0 = 16.3, and for particles moving along the axial
trajectory with a different energy: at ε = 0.01, we get τd 1 = 16.91, and at
ε = 0.01 — τ

d2
= 15.89. It can be seen from these data that there should be

a plane where time-of-flight energy focusing and, at the same time, spatial
focusing of the beam are carried out.
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Fig. 2. Projection of the beam onto the middle plane of the mirror.

Fig. 3. Projections of the extreme beam paths to the vertical direction.

Dimensionless Newton equations for different initial conditions were in-
tegrated over dimensionless time τ to the same final value τk0 = τd0. In
this case, due to different initial conditions, some particles did not reach the
detector plane, and some flew over the detector plane. In this case, the time
of arrival of charged particles to the detector was determined taking into ac-
count the fact that near the plane of the detector, where the field is absent,
the particles move along rectilinear trajectories with a constant velocity. If
by the time instant τ = τk0 the particle was at the point (xk, yk, zk) and
moved with the speed (ẋk, ẏk, żk), then the distance to the detector plane
was found.

The equation of the detector plane passing through the point (xd, yd)
parallel to the axis z is

y − yd = kd(x− xd) , (13)
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where kd = −1/tg α. The equation of the projection of the trajectory onto
the plane xy can be written as

y − yk = kk(x− xk) , (14)

where kk = ẏk/ẋk. Coordinates of the point of intersection of this projection
with the detector plane

x1 =
kkxk − kdxd + yd − yk

kk − kd
, y1 = kk(x1 − xk) + yk . (15)

Now the time of arrival at the detector is determined by the formula:

τd = τd 0 ±

√
(x1 − xk)2 + (y1 − yk)2

υxy
. (16)

Here, the sign “+” is taken if the particle does not reach the detector
plane, and the sign “−” if it flies over the detector plane; a υxy is the
projection of the velocity onto the plane xy

υxy =
√
ẋ2k + ẏ2k . (17)

It is also possible to carry out a telescopic behavior of the beam in the
vertical direction, slightly changing the potential at the reflecting electrode.
If we apply a potential V2 = −0.05765 to it, then at the exit from the mirror
we get an almost parallel beam of particles. Figure 4 shows the course of
the extreme trajectories of the beam for this case.

Fig. 4. Projections of the extreme beam paths to the vertical direction.
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5. Conclusion

The use of analytical expressions describing the field of transaxial three-
electrode mirrors made it possible to numerically integrate Newton’s dimen-
sionless equations for a charged particle in the field of a mirror, and thus
to study the behavior of a beam of charged particles in a transaxial mirror.
It is shown that, as a result of reflection in a transaxial mirror, a diverging
beam can be converted into an almost parallel one and high-quality spatio-
temporal focusing can be achieved. This property of transaxial mirrors can
be used to create highly efficient time-of-flight mass spectrometers consisting
of various combinations of transaxial mirrors.

The work was carried out within the framework of a project with grant
funding from the Science Committee of the Ministry of Education and Sci-
ence of the Republic of Kazakhstan (IRN AR09258546 and IRN AP09562705).
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