
Acta Physica Polonica B Proceedings Supplement 15, 1-A1 (2022)

VARIATIONAL FORMULATIONS
OF GENERAL RELATIVITY∗

Bartłomiej Bąk

KMMF FUW, Department of Mathematical Methods in Physics
Faculty of Physic, University of Warsaw, Warsaw, Poland

Received 20 January 2022, accepted 21 January 2022,
published online 31 January 2022

In this paper, I present a few results devoted to variational methods in
General Relativity Theory. I will focus on the equivalence between three
different variational formulations. Moreover, I analyze how the dependence
on covariant derivatives affects the affine connection.
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1. Introduction

To properly describe the General Relativity Theory, it is necessary to
use the variational calculus. It is quite surprising that there exist a few
possibilities (so-called pictures) to do this, so let me present three of them:

— metric picture:

Lg = Lg (gµν , gµν,α , gµν,αβ , φ, φ,ν) ,

— Palatini picture:

LP = LP
(
gµν , Γ

κ
λµ, Γ

κ
λµ,ν , φ, φ,ν

)
,

— affine picture:
LA = LA

(
Γ κλµ, Γ

κ
λµ,ν , φ, φ,ν

)
,

where Γ is a symmetric but not necessarily(!) metric connection and φ
represents the general (tensor) matter field. The main topic of this paper
is to convince the reader that all of them are equivalent on shell — on
the subspace which is defined by the Euler–Lagrange system. Moreover, if
the Lagrangian depends on the connection via the covariant derivatives of
matter field, it leads to the non-trivial extension of Einstein equations and
symmetric (non-metric) affine connection.
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2. Standard metric picture

In this picture, the fundamental object is the metric Lagrangian Lg which
is a sum of two parts: Hilbert Lagrangian LH and matter Lagrangian Lmatt.
It is necessary to mention that the Hilbert Lagrangian [9] presented below

LH =

√
| det g|
16π

◦
R

is constructed by the connection which is metric(!) a priori. Furthermore,
all geometrical objects which are made by the metric connection

◦
Γ will

have the “◦” sign above. The metricity of the connection looks like an extra
assumption and, in the most of well-known theories (e.g. electrodynamics),
is absolutely correct.

The variation of the Hilbert Lagrangian was calculated in [6]

δLH = − 1

16π

◦
G µνδgµν + ∂ν

(
π λµν
κ δ

◦
Γ
κ
λµ

)
(1)

= − 1

16π

◦
G µνδgµν + πµν δ

◦
Rµν +

(◦
∇νπ

λµν
κ

)
δ

◦
Γ
κ
λµ , (2)

where
◦
G µν is the Einstein tensor density constructed by the metric connec-

tion
◦
Γ and π is the following function of the metric tensor g:

π λµν
κ := δνκ π

λµ − δ(λκ πµ)ν , (3)

πµν :=

√
|det g|
16π

gµν . (4)

Due to these definitions, the quantity
◦
∇π is obviously zero, but we will use

equation (2) in the next part of this paper.
The typical matter Lagrangian has the following variational structure

(see [3, 8]):

Lmatt = Lmatt (φ, φ,ν , gµν) , (5)

δLmatt =
∂Lmatt

∂gµν
δgµν + ∂ν (pν δφ) . (6)

It means that this Lagrangian density represents a special class of theories
which do not depend upon covariant derivatives of matter field (e.g. theory
of scalar field, electrodynamics, continuous media).

Now, the variation δLg = δ(LH+Lmatt) is a sum of variations (2) and (6)

δLg =

(
∂Lmatt

∂gµν
− 1

16π

◦
G µν

)
δgµν + ∂ν

(
pν δφ+ π λµν

κ δ
◦
Γ
κ
λµ

)
. (7)
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This formula gives us the Einstein equation as a consequence of vanishing
the volume (bulk) term [3, 8]. In addition, it defines the symmetric energy-
momentum tensor density T µν as follows:

1

2
T µν :=

∂Lmatt

∂gµν
=

1

16π

◦
G µν . (8)

The last term in boundary part ∂
(
π δ

◦
Γ
)

could be transformed like in
Hilbert variation (1) implying the final variational formula for metric La-
grangian on shell

δLg = ∂ν (pν δφ) + πµν δ
◦
Rµν +

(◦
∇νπ

λµν
κ

)
δ

◦
Γ
κ
λµ

= ∂ν (pν δφ) + δLH +
1

16π

◦
G µν δgµν .

Subtracting δLH produces variation of the matter Lagrangian

δLmatt = ∂ν (pν δφ) +
1

16π

◦
G µν δgµν +

(◦
∇νπ

λµν
κ

)
δ

◦
Γ
κ
λµ . (9)

This formula strictly leads us to the Euler–Lagrange system (field equations)

pλ =
∂Lmatt

∂φ,λ
, (10)

∂λp
λ =

∂Lmatt

∂φ
, (11)

1

16π

◦
G µν =

∂Lmatt

∂gµν
, (12)

◦
∇νπ

λµν
κ =

∂Lmatt

∂
◦
Γ κ

λµ

= 0 , (13)

where pλ is momenta canonically conjugated to the matter field φ.
Unfortunately, this construction works only for the Lagrangians which

do not depend on covariant derivatives. If the theory allows the dependence
on the covariant derivatives of the matter fields, then the system (10)–(13)
has to be reformulated. Moreover, it is quite hard and time-consuming in
the metric picture. The remedy for such a problem is the Palatini variational
formalism, which is described in the next section.
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3. Palatini picture

The Palatini Lagrangian is made of the two parts: LH and Lmatt as
before. In the metric picture, the connection

◦
Γ was only a combination

of the first derivatives and metric tensor itself. However, in the Palatini
picture, the connection Γ and the metric tensor g are independent fields in
variational sense. Then, equation (2) still holds but the metric connection
◦
Γ has to be replaced by the general symmetric connection Γ . Additionally,
the matter Lagrangian depends on the covariant derivatives of matter field.
It means that the variation of this Lagrangian has the form written below:

Lmatt = Lmatt (φ, ∇νφ, gµν) ,

δLmatt =
∂Lmatt

∂gµν
δgµν + P λµ

κ δΓ κλµ + ∂ν (pν δφ) , (14)

and

P λµ
κ :=

∂Lmatt

∂Γ κλµ
, pν :=

∂Lmatt

∂∇νφ
=
∂Lmatt

∂φ,ν
.

Hence, the variation of Palatini Lagrangian is the following:

δLP =

(
∂Lmatt

∂gµν
− 1

16π
Gµν

)
δgµν +

(
P λµ
κ −∇νπ λµν

κ

)
δΓ κλµ

+∂ν

(
pν δφ+ π λµν

κ δΓ κλµ

)
. (15)

From this formula, we could extract two the most important (for our case)
equations

∂Lmatt

∂gµν
=

1

16π
Gµν , (16)

P λµ
κ = ∇νπ λµν

κ . (17)

The first one is the Einstein equation which describes the interaction between
geometry of spacetime and matter — it is analogous to equation (12) in the
metric picture. The second one shows that if our matter Lagrangian (in
Palatini picture!) depends on covariant derivatives, the connection must be
non-metric.

4. Affine picture

The affine picture is using Lagrangians where configurations are the first
jets of the general symmetric connection Γ and the first jets of the matter
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field φ. Then,

LA = LA = LA
(
Γ κλµ, Γ

κ
λµ,ν , φ, φ,ν

)
, (18)

δLA = ∂ν

(
π λµν
κ δΓ κλµ + pν δφ

)
. (19)

Comparing this variational formula with (15) we can see that they are abso-
lutely equivalent on shell — on the subspace spanned by the field equations
(see Introduction). The only problem is in the different initial configurations
between these two pictures. The Palatini Lagrangian explicitly depends on
the metric opposite to the affine Lagrangian where metric is, via tensor den-
sity π (3), (4), a momentum canonically conjugated with the connection Γ .
Fortunately, the Einstein equation (16) allows to rewrite the metric tensor g
as a (usually implicit) function of other variables. Hence, implementation
of such a metric into the LP produces the proper affine Lagrangian for this
theory [3, 5].

As it was written at the beginning of this section, LA depends on the
first jet of the connection Γ . Due to the fact that Γ and ∂Γ are not tensors,
they cannot occur in the Lagrangian randomly. Especially, the derivatives
of the connection are organized (in this paper) in symmetric Ricci tensor
Kµν — for general connection, the skew-symmetric part of Ricci may not
vanish. This assumption provides the following variational formula [3, 5]:

δLA =
(
∇νπ λµν

κ

)
δΓ κλµ + πµνδKµν + ∂ν (pν δφ) .

Now, equations (16), (17) from the Palatini picture may be equivalently
represented as

πµν =
∂LA
∂Kµν

, ∇νπ λµν
κ =

∂LA
∂Γ κλµ

. (20)

The important difference between the affine picture and the remaining ones
is the fact that the affine Lagrangian cannot be split into Hilbert and matter
parts.

The simple example of this picture is the Lagrangian for the vacuum
gravity with cosmological constant Λ [2, 3]

LA =

√
|detK|
8πΛ

,

with field equations (20):

Kµν = Λgµν , ∇νπ λµν
κ = 0 . (21)
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Using these equations, the example Lagrangian LA rewritten to the Palatini
picture has the following form:

LP =

√
| det g|
16π

Kµν g
µν −

√
|det g|Λ

8π
,

or in the metric picture:

Lg =

√
| det g|
16π

◦
R −

√
|det g|Λ

8π
.

This example has one more important property, namely, all three Lagrangians
LA, LP, Lg are equivalent on shell but also numerically equal. It holds be-
cause the field equations (21) guarantee the metricity of the connection.

5. Generalisation of the metric picture

The last variational formula, and somehow the topic of this paper, is the
generalised metric picture which will be constructed from the Palatini picture
on shell. It automatically guarantees the equivalence but also completes the
variational description.

As it was written in Section 3, the Palatini Lagrangian has an analogous
structure to the metric Lagrangian — it is a sum of Hilbert and matter
Lagrangians (of course, they are not equal to those in the metric picture!).
Naively, one can assume that inserting metric connection

◦
Γ into LP gives Lg.

Indeed, it is a necessary step to use the field equation (17), but unfortunately,
it is not sufficient. Obviously, equation (17) could be impossible to solve
analytically, then the solution could be treated in the following way:

Nκ
λµ := Γ κλµ−

◦
Γ
κ
λµ , (22)

where N is the non-metricity tensor and
◦
Γ is the metric (Levi-Civita) con-

nection. Using the variation of Palatini Lagrangian (15) on shell and the
decomposition of the general affine connection (22), it is obvious that

δLP = ∂ν

(
pν δφ+ π λµν

κ δNκ
λµ

)
+ ∂ν

(
π λµν
κ δ

◦
Γ
κ
λµ

)
.

The last term is a part of Hilbert variation (1), so

δLP = δLH +
1

16π

◦
G µν δgµν + ∂ν

(
pν δφ+ π λµν

κ δNκ
λµ

)
.

It could be proved that

∂ν

(
π λµν
κ δNκ

λµ

)
= ∂κ (Rµνκ δgµν)− δ

[◦
∇κR σκ

σ

]
, (23)
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where

Rµνκ :=

√
| det g|
16π

[
Nκµν −N σ(µ

σ gν)κ +
1

2
(Nκσ

σ −N σκ
σ ) gµν

]
. (24)

The above definition shows the equivalence between R and N because this
equation could be easily inverted to the function N(R). Then

∂κ (Rµνκ δgµν) = Yλµκ δ
◦
Γ
κ
λµ +

(◦
∇κRµνκ

)
δgµν ,

where

Yλµκ := R λµ
κ +R µλ

κ . (25)

Due to the above calculations, the last variation of the Palatini picture is

δLP = δLH − δ
[◦
∇κR σκ

σ

]
+ ∂ν (pν δφ)

+

(
1

16π

◦
G µν+

◦
∇κRµνκ

)
δgµν + Yλµκ δ

◦
Γ
κ
λµ .

Finally, the proper metric Lagrangian is defined as Lg := LP+
◦
∇R. Analo-

gously, the matter Lagrangian is Lmatt := Lg − LH. The variation of Lmatt

is the following:

δLmatt = ∂ν (pν δφ) +

(
1

16π

◦
G µν+

◦
∇κRµνκ

)
δgµν + Yλµκ δ

◦
Γ
κ
λµ , (26)

which will imply the proper Einstein equation

1

16π

◦
G µν+

◦
∇κRµνκ =

∂Lmatt

∂gµν
. (27)

Interestingly, putting the second term on the right-hand side of above equal-
ity provides the so-called variational derivative of matter Lagrangian over
the metric tensor

∂Lmatt

∂gµν
−

◦
∇κRµνκ =

δLmatt

δgµν
:=

∂Lmatt

∂gµν
− ∂κ

∂Lmatt

∂gµν,κ
.

Analogously to the metric picture, this quantity could be called a symmetric
tensor density (8) but the time–time component of it may not correlate with
the energy of such matter.



1-A1.8 B. Bąk

The last conclusion which is made refers to the relation between matter
and non-metricity of the connection. Due to the fact that Lmatt depends on
◦
∇ φ, the derivative of such Lagrangian over the metric connection

◦
Γ does

not vanish

∂Lmatt

∂
◦
Γ κ

λµ

= Yλµκ 6= 0 .

On the other hand, this quantity is related to Rµνκ (25) and then to the
non-metricity tensor Nκ

λµ (24). It clearly shows that theories described
by the covariant derivatives could be written in much easier (and somehow
more natural) non-metric description. On the other hand, the theories with
non-metric connection can be naturally translated to metric theories with
matter fields [1–5, 7, 8].
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