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We describe stationary and axisymmetric gas configurations surround-
ing black holes. They consist of a collisionless relativistic kinetic gas of
identical massive particles following bound orbits in a Schwarzschild ex-
terior spacetime and are modeled by a one-particle distribution function
which is the product of a function of the energy and a function of the or-
bital inclination associated with the particle’s trajectory. The morphology
of the resulting configuration is analyzed.
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1. Introduction

In recent years, there has been interest in analyzing the properties of
solutions to the Vlasov equation on a fixed, curved background spacetime.
In particular, such an analysis has been performed for a Schwarzschild back-
ground with the aim of understanding the Bondi–Michel and Bondi–Hoyle–
Littleton accretion models for a collisionless kinetic gas [1–3]. Also, kinetic
analogues of the perfect fluid “Polish doughnuts” configurations are discussed
in [4]. Similarly to their fluid counterparts, they describe stationary and
axisymmetric disks around black holes, where the individual gas particles
follow bound timelike geodesics in a Schwarzschild spacetime. In [4], these
configurations are modeled by a one-particle distribution function (DF) de-
pending only on the energy E, azimuthal Lz, and total angular momentum
L of the particles. Examples are given in which the DF is described by a
generalized polytropic ansatz [5, 6] depending only on E and Lz. In this
article, we provide additional examples where the DF is a function of E and
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the inclination angle i defined by cos i = Lz/L. We analyze the behavior of
the resulting particle density and compute the total number of particles of
the gas cloud as a function of the free parameters in our ansatz.

2. The model

We work in the Schwarzschild exterior spacetime, written in the usual
coordinates (t, r, ϑ, ϕ), with metric1

g := −N(r)dt2 +
dr2

N(r)
+ r2

(
dϑ2 + sin2 ϑdϕ2

)
, N(r) := 1− 2M

r
> 0 ,

(1)
where M > 0 is the mass of the black hole. Since this spacetime is static
and spherically symmetric, the particle’s rest mass m is conserved along
with E, L, and Lz. In terms of the orthonormal tetrad e0̂ = N(r)−1/2∂t,
e1̂ = N(r)1/2∂r, e2̂ = r−1∂ϑ, e3̂ = (r sinϑ)−1∂ϕ, the four-momentum of the
particles can be parametrized as p = pµ̂eµ̂ with (see [2, Eq. (58)])

(
pµ̂
)
=

(
E√
N(r)

, εr

√
E2 − VL(r)

N(r)
,
εϑ
r

√
L2 − L2

z

sin2 ϑ
,

Lz
r sinϑ

)
, (2)

where the signs εr = ±1 and εϑ = ±1 determine the direction of motion in
the radial and polar directions, respectively, and VL(r) = N(r)(m2+L2/r2)
is the effective potential for the radial motion.

A collisionless relativistic gas consisting of identical massive particles of
mass m trapped in VL is described by a DF which relaxes in time to a DF
depending only on integrals of motion. This is due to phase mixing, see e.g.
[7, 8] and references therein. Here, we assume, in addition, that the final
configuration is axisymmetric, which implies that the DF has the form of

f(x, p) = F (E,L,Lz) (3)

for some function F which we shall specify shortly. The relevant spacetime
observables are the particle current density vector field J and the energy-
momentum-stress tensor T defined by

Jµ̂(x) :=

∫
P+
x (m)

f(x, p)pµ̂dvolx(p) , Tµ̂ν̂(x) :=

∫
P+
x (m)

f(x, p)pµ̂pν̂dvolx(p) ,

(4)
where dvolx(p) = dp1̂ ∧ dp2̂ ∧ dp3̂/p0̂ is the Lorentz-invariant volume form
on the future mass hyperboloid P+

x (m) of mass m at x, see [9] for details.
1 We use units in which the speed of light and the gravitational constant are one.
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For the following, we focus on the particular ansatz

F (E,L,Lz) := F0(E) cos2s(i) , F0(E) = α

(
1− E

m

)k− 3
2

+

, (5)

where α > 0, k > 1/2 are constants, i is the inclination angle, and s ≥ 0 is
a parameter. The notation f+ refers to the positive part of the quantity f ,
that is f+ = f if f > 0 and f+ = 0 otherwise. Here, the function F0

is the general relativistic generalization of the polytropic ansatz [10], while
the parameter s controls the concentration of the orbits near the equatorial
plane ϑ = π/2 (see Fig. 1).

i

Fig. 1. Illustration of the effect of the parameter s (left panel for small s, right panel
for large s). As s increases, orbits confined to planes lying close to the equatorial
one become more populated, such that the configuration becomes a thin disk in
the limit s→∞.

For the following, we introduce the dimensionless quantities ξ := r/M ,
λ := L/(Mm), ε := E/m, and Uλ(ξ) := VL(r)/m

2, and parametrize the
future mass hyperboloid P+

x (m) in terms of the quantities (ε, λ, χ), where
the angle χ is defined by (p2̂, p3̂) = mλ

ξ (cosχ, sinχ) which implies cos i =

sinϑ sinχ. For bound orbits, these quantities are restricted to the following
domain (see [11, Appendix A] and [4, Appendix A]):

εc(ξ) < ε < 1 , λc(ε) ≤ λ ≤ λmax(ε, ξ) , and 0 ≤ χ ≤ 2π , (6)

where εc(ξ) is the minimum energy at radius ξ, λc(ε) is the critical value
for the total angular momentum for which the maximum of the potential
barrier in Uλ(ξ) is exactly equal to ε2, and λmax(ε, ξ) is the maximum angular
momentum permitted at the energy ε and radius ξ. Note that the domain (6)
is empty if ξ < 4, since for a Schwarzschild black hole, the minimum radius
for bound orbits is r = 4M .
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For the ansatz (5), the fibre integrals in Eq. (4) yield

Jµ̂(x) =
m2 sin2s ϑ

ξ2

∑
εr=±1

1∫
εc(ξ)

λmax(ε,ξ)∫
λc(ε)

2π∫
0

pµ̂F0(E) sin2s χ
dε λdλ dχ√
ε2 − Uλ(ξ)

, (7)

and similarly for Tµ̂ν̂(x). Using expressions (2) for the four-momentum, the
non-vanishing orthonormal components of J µ̂ and T µ̂ν̂ are

J 0̂ = 4
√
π
sin2s ϑ

N3/2

Γ (s+ 1/2)

Γ (s+ 1)
m3

1∫
εc(ξ)

dεεY (ε, ξ)1/2F0(mε) , (8)

T 0̂
0̂ = −4

√
π
sin2s ϑ

N2

Γ (s+ 1/2)

Γ (s+ 1)
m4

1∫
εc(ξ)

dεε2Y (ε, ξ)1/2F0(mε) , (9)

T 1̂
1̂ =

4
√
π

3

sin2s ϑ

N2

Γ (s+ 1/2)

Γ (s+ 1)
m4

1∫
εc(ξ)

dεY (ε, ξ)3/2F0(mε) , (10)

T 2̂
2̂ =

4
√
π

3

sin2s ϑ

N2

Γ (s+ 1/2)

Γ (s+ 2)
m4

1∫
εc(ξ)

dεY (ε, ξ)1/2Z(ε, ξ)F0(mε) , (11)

T 3̂
3̂ = (2s+ 1)T 2̂

2̂ , (12)

where we have introduced the shorthand notation

Y (ε, ξ) := ε2 −N(r)

[
1 +

λc(ε)
2

ξ2

]
, Z(ε, ξ) := ε2 −N(r)

[
1− λc(ε)

2

2ξ2

]
.

(13)
The quantities (8)–(12) determine the relevant macroscopic observables,
namely the particle density n = J 0̂, energy density E = −T 0̂

0̂, and the
principal pressures P1 = T 1̂

1̂, P2 = T 2̂
2̂, and P3 = (2s + 1)P2. Note that

all of these quantities have the dependency of sin2s ϑ with respect to the
polar angle ϑ. In the limit s = 0, the configurations describe a spherical
shell of gas trapped in the region of ξ > 4, while for s = 1/2, 1, 3/2, . . .,
they are axisymmetric, the macroscopic variables being zero for ξ ≤ 4 and
along the axis ϑ = 0, π. In the next section, we analyze the morphology of
these configurations as a function of the parameters k and s for a fixed total
particle number.
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3. Total particle number and behavior of the particle density

The (conserved) total particle number N is defined as minus the flux
integral of the current density vector field with respect to a Cauchy surface.
This in turn can be rewritten as an integral over the six-dimensional phase
space parametrized by (xi, pi). To compute this integral, it is convenient to
transform (xi, pi) to action-angle variables (Qi,Ji). The integral over the
angle variables Qi yields a factor (2π)3, while the integral over the action
variables can be rewritten in terms of the conserved quantities (E,L,Lz),
taking into account that d3J = T (E,L)dE dLdLz/2π, where T (E,L) is
the period function for the radial motion. For the Schwarzschild spacetime,
this function can be expressed in terms of elliptic integrals and has the form
of T (E,L) = 2Mε [H2 −H0] (see [7, Appendix A] and [4] for the explicit
form of H2 and H0 in the Schwarzschild case). For ansatz (5), this yields
the following expression for the total particle number:

N =
16π2

2s+ 1
(Mm)3α

1∫
εmin

dε ε (1− ε)k−
3
2

+

λub(ε)∫
λc(ε)

dλ λ (H2 −H0) , (14)

where εmin =
√

8/9 and λub(ε) is given in [11, Appendix A]. To compute
this integral, it is convenient to re-parametrize the orbits in terms of their ec-
centricity e and “semi-latus rectum” P , related to the turning points (ξ1, ξ2)
by ξ1 = P/(1+ e) and ξ2 = P/(1− e), and to the conserved quantities (ε, λ)
according to [4, 7, 12, 13] (ε2, λ2) = (P−1[(P − 2)2− 4e2], P 2)/(P − e2− 3).
Here, (P, e) are restricted to the domain 0 < e < 1 and P > 6 + 2e. The
resulting integral is then calculated numerically using Mathematica. The to-
tal mass is simply mN and the total energy is given by the same expression
as in Eq. (14) with an extra factor mε inside the integral.

Fig. 2. Left panel: Dimensionless profile of the particle density in the equatorial
plane for k = 3, 4, 5 and s = 1 in a logarithmic scale. Right panel: The same
quantity multiplied with ξ2 which shows that even though configurations with
higher values of k have a larger maximum, they have a faster decay at infinity.
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In Fig. 2, we show the dimensionless quantity M3n/N in the equatorial
plane for several values of k and s = 1. In Fig. 3, we show contour plots of
the same quantity in the xz-plane for k = 3 and two different values of s.

Fig. 3. Contour plots for the particle density in the xz-plane for the configurations
with k = 3 and s = 1 (left panel) and k = 3 and s = 3 (right panel). Here,
(x, z) = r(sinϑ, cosϑ), the black region represents the black hole interior and the
dashed black circles the interior boundary of the disk. As it is visible from these
plots, the configuration with higher s yields a thinner disk.

4. Conclusions

We described a family of stationary and axisymmetric collisionless gas
configurations which are trapped in the gravitational potential of a Schwarz-
schild black hole. This family depends on two parameters s and k which
control the thickness of the disk and its radial density distribution. An
alternative model is discussed in detail in [4]. We expect these configurations
to serve as a first approximation for the description of low-luminosity disks
surrounding black holes.

We acknowledge support from a CIC grant to Universidad Michoacana
and CONACyT Frontier Project No. 376127.
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