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In this talk, I gave an account of my article arXiv:1909.07756[gr-qc]
which considered the following question: Penrose gave a construction which
associates a plane-wave space-time P (M,Γ ) with any pair (M,Γ ) where
M is a space-time and Γ is a null geodesic in M ; what condition must M
satisfy if P is diagonalisable for every Γ in M?
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1. The problem

It is well-known that, given a smooth 3-dimensional Riemannian or
Lorentzian metric, there always locally exist coordinates in which the metric
is diagonal, that is to say, the off-diagonal components are all zero (see [1]
for the Riemannian case and [2] for the Lorentzian). In 4 dimensions and
above this is not true, see e.g. [3] or [4]: there are 4-metrics which are not
diagonalisable, and in particular for plane waves one can give a necessary
and sufficient condition for diagonalisability, which we will recall below.

In [5], Penrose gave a construction which associates a plane-wave space-
time P (M,Γ ) with any pair (M,Γ ) whereM is a space-time and Γ is a null
geodesic in M . The question therefore naturally arises of whether or not,
for a given M , every such P (M,Γ ) can be diagonalised. To approach this
question, we first recall the Penrose construction, which can be phrased as
follows: in the Brinkman form, a plane-wave metric can be written

g = 2du
(
dv +H

(
u, ζ, ζ̄

)
du

)
− 2dζdζ̄ , (1)

with
H

(
u, ζ, ζ̄

)
= 1

2

(
Ψ(u)ζ2 + 2Φ(u)ζζ̄ + Ψ̄(u)ζ̄2

)
; (2)

∗ Based on a talk presented at the 7th Conference of the Polish Society on Relativity,
Łódź, Poland, 20–23 September 2021.
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with complex Ψ(u) and real Φ(u), which are in fact the remaining nonzero
components of the Weyl and Ricci spinors respectively, in a suitable spinor
dyad. Now, given an arbitrary space-timeM and a null geodesic Γ inM , one
may choose a spinor αA along Γ so that the null tangent to Γ is `a = αAᾱA′

and
DαA := `b∇bα

A = 0 ,

and an affine parameter u along Γ so that Du = 1. Then one calculates the
curvature components

Ψ(u) := ψABCDα
AαBαCαD , Φ(u) := φABA′B′α

AαBᾱA′ᾱB′ (3)

along Γ , where ψABCD, φABA′B′ are respectively the Weyl and Ricci spinors
of M , then substitutes these into H in (2) and this into g in (1) — this
gives the metric of P (M,Γ ). Penrose defined P (M,Γ ) via a genuine limit-
ing process but the result is the same. There is a freedom to multiply αA

by a complex constant, say λ, but this changes P (M,Γ ) only by a diffeo-
morphism.

We recall that it was shown in [3] that the plane-wave metric (1) is
diagonalisable iff the phase of Ψ(u) is constant in u, a condition which can
be written

Ψ̄ Ψ̇ − Ψ ˙̄Ψ = 0 , (4)

with the dot for d/du.
Now we can pose the problem: what is the condition on M if P (M,Γ )

is diagonalisable for every Γ?

2. The solution

If P (M,Γ ) is diagonalisable for every choice of Γ in a given M , then (4)
must hold with (3) and every choice of αA, which is only possible if

ψ̄(A′B′C′D′∇E′)(AψBCDE) − ψ(ABCD∇E)(A′ψ̄B′C′D′E′) = 0 . (5)

This is clearly a strong condition on M — twenty-one real conditions on the
ten real components of the Weyl tensor. To analyse it, suppose first that
the scalar invariant

I := ψABCDψ
ABCD

is nonzero, then contract (5) with ψ̄A′B′C′D′ to obtain

3Ī

5
∇E′(AψBCDE) = ψ(ABCDWE)E′

with
WEE′ = ψ̄A′B′C′D′∇E(E′ψ̄A′B′C′D′) .
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Set UEE′ := 5
3Ī
WEE′ so that

∇E′(AψBCDE) = ψ(ABCDUE)E′ , (6)

and substitute back into (5) to see that UEE′ must necessarily be a real
vector. Now calculate a contracted derivative of (6):

∇E′(A∇E′
BψCDEF ) = ∇E′(A

(
UE′

B ψCDEF )

)
,

expand both sides, and use the Ricci identities and (6) to deduce that

∇E′(AU
E′

B) = 0 .

Since UAA′ is real, this means that it is closed and therefore exact, say

UAA′ = ∇AA′U ,

for some real function U , when finally (6) implies that ωABCD := e−UψABCD

is a valence-4 Killing spinor

∇A′(AωBCDE) = 0 .

It is known that if M admits a valence-4 Killing spinor then it must be
proportional to the Weyl spinor, but this is a stronger condition since the
function of proportionality must be real.

If I = 0, then the calculation above goes through using the other scalar
invariant J = ψABCDψ

AB
PQψ

CDPQ, and in the degenerate cases, when I

and J are both zero (these have algebraically special Weyl spinor), one has to
proceed type by type in the Petrov–Pirani–Penrose (or PPP) classification.
In all cases, the conclusion is the same: the Weyl spinor must be a real
function times a valence-4 Killing spinor.

One may now seek to classify space-times with such a Weyl spinor. Con-
sidering vacuum or Einstein metrics first, a useful observation is that every
principal spinor of a Killing spinor is geodesic and shear-free [6], but for
vacuum or Einstein metrics principal spinors of the Weyl spinor are only
geodesic and shear-free if they are repeated (see e.g. [7]). Thus the only
vacuum cases to try are type N and type D in the PPP classification, and in
the first, the Weyl spinor needs to be proportional with a real factor to the
fourth power of a valence-1 Killing spinor (and these metrics are known —
see [8] for references), while in the second, it is proportional with a real factor
to the square of a valence-2 Killing spinor (and again these are known — see
[8]). Among the type D examples, it is easy to see that the Schwarzschild
metric has the desired property — so all Penrose limits of the Schwarzschild
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metric are diagonalisable — but the Kerr metric with a 6= 0 does not —
the Weyl spinor for Kerr is a complex function times a valence-4 Killing
spinor rather than a real one. In the algebraically general case, there can be
no vacuum examples but there are interesting nonvacuum ones. Here, the
Killing spinor, and therefore also the Weyl spinor has four distinct principal
spinors so that there are four geodesic and shear-free congruences. Precisely,
this case but in Riemannian signature was investigated by Kobak [9]. He
considered the metrics

g = dzdz̄ + fdwdw̄

with f real and f(z + w̄, z̄ + w). These metrics by design have two distinct
Hermitian structures: one has (dz,dw) as holomorphic one-forms and the
other has (dz − fdw̄,dw + dz̄)1. If they could be made Lorentzian, then
each Hermitian structure would give rise to two geodesic and shear-free
congruences, giving the desired four such congruences. If we set z = x+ iy
and w = u+ iv, restrict f to f = f(x+ u), and then set y = it and switch
the sign on the metric, it becomes real and Lorentzian

g = dt2 − dx2 − f(x+ u)
(
du2 + dv2

)
,

and it can be checked [8] that the Weyl spinor is algebraically general and
proportional to a Killing spinor with a real function of proportionality. Thus
all its Penrose limits are diagonalisable. (The above and Schwarzschild are
two examples of diagonal metrics with all Penrose limits diagonalisable but,
as was seen in [8], the Kasner metric is, in general, a diagonal metric with
some Penrose limits diagonalisable but most non-diagonalisable.)

3. An afterthought

In [8], I calculated the Penrose limits of the Kasner metric, which is

g = dt2 − t2pdx2 − t2qdy2 − t2rdz2 ,

where p, q, r are real constants. This process begins with solving the null
geodesic equations, which are the Euler–Lagrange equations for the La-
grangian

L := 1
2

(
ṫ2 − t2pẋ2 − t2qẏ2 − t2rż2

)
,

together with L = 0. The Kasner metric has three obvious Killing vectors,
∂x, ∂y and ∂z so there are at once three constants of the motion

c1 = t2pẋ , c2 = t2qẏ , c3 = t2rż ,

1 There are sign errors in these in [8].
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after which the geodesic equation is solved by quadratures, and one can
proceed to find P (M,Γ ) for different Γ .

My conclusion in [8] was that, in general, the Penrose limit was non-
diagonalisable (so that, in particular, a diagonalisable M can have non-
diagonalisable P (M,Γ )), but it would be diagonalisable if the product c1c2c3

was zero. Stated differently, the Penrose limit would be diagonalisable for
any null geodesic Γ lying in one of the 3-surfaces of constant x or constant y
or constant z. In discussion after my talk at POTOR7, I realised that the
following must be true (see [10]):

Proposition. Suppose Σ is a time-like umbilic hypersurface in a space-
time M , and Γ is a null geodesic of M lying entirely in Σ, then the Penrose
limit P (M,Γ ) is diagonalisable.

To see this, first recall that Σ is umbilic if and only if its second fundamental
form is proportional to its metric, and then any null geodesic Γ through a
point in Σ and initially tangent to Σ will remain in Σ (Σ is totally geodesic
for null geodesics and one needs Σ to be time-like in order for there to be
any such Γ ). Next, one shows from the Codazzi equations that the magnetic
part of the Weyl tensor is necessarily zero on an umbilic hypersurface (recall
the magnetic part of the Weyl tensor is defined by

Hab = 1
2ε

pq
ac CpqbdN

cNd ,

where Cabcd is the space-time Weyl spinor and Na is the unit normal to Σ).
Finally, one shows from this that Ψ(u) has constant phase along any Γ lying
in Σ. Now a 3-surface Σ orthogonal to a hypersurface-orthogonal Killing
vector necessarily has vanishing second fundamental form — it is totally
geodesic and so in particular is umbilic. This explains the observation above
about the limits of the Kasner metric. This Proposition also gives a reason
why every Penrose limit of the Schwarzschild metric is diagonalisable: with
the aid of a rotation any null geodesic of the Schwarzschild metric may be
supposed to lie in the equatorial plane, but the equatorial plane is the fixed
point set of the involution θ → π − θ and so is again totally geodesic and
therefore umbilic.

I am grateful for the opportunity to attend POTOR7 and for hospitality
received there. I include here in Section 3 a result arising after my talk
(see) [10]. For a longer account of the earlier material and fuller references
see [8].
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