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A perturbed black hole emits radiation at certain characteristic frequen-
cies, the quasinormal frequencies, similar to the spectrum of frequencies
produced by a struck guitar string. The normal modes of a guitar string
are complete, in the sense that any oscillation of the string may be written
as a superposition of these modes. In the case of quasinormal modes, this
is not the case in general. We present here a simple proof of this fact.
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1. Introduction

It is a classical, and well-known, fact that any solution to the wave
equation on a bounded interval

−∂2t u+ ∂2xu = 0 , u(0) = u(π) = 0

may be written as a sum over harmonics

u(x, t) =
∞∑

n=−∞
ane
−iσntun(x) , un(x) := sinnx , σn = n (1)

for some an ∈ C. The functions un and frequencies σn are characterised by
being solutions to the eigenvalue problem

∂2xu+ σ2u = 0 , u(0) = u(π) = 0 .

It is also a numerical [1, 2] and increasingly an experimental [3] fact that
a perturbed black hole will, at least for some time interval, produce radia-
tion that oscillates and decays at certain fixed discrete complex frequencies,
known as the quasinormal frequencies. One may ask whether a result similar
to (1) holds in this case. That is, are the quasinormal modes complete.
∗ Presented at the 7th Conference of the Polish Society on Relativity, Łódź, Poland,
20–23 September 2021.
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2. Schwarzschild–de Sitter

We consider the linear wave equation on a black hole background

2gψ = 0 , (2)

where for concreteness we will assume that g is the Schwarzshild–de Sitter
metric

g = −
(
1− 2m

r
− r2

l2

)
dt2 +

dr2

1− 2m
r −

r2

l2

+ r2
(
dθ2 + sin2 θ dφ2

)
,

where m, l are chosen such that the polynomial r3 − rl2 + 2ml2 has two
positive roots, rh, rc, and we restrict attention to the static patch (t, r, θ, φ) ∈
R× (rh, rc)× S2.

On the static patch, we introduce the usual tortoise coordinate r∗ by

r∗ =

r∫
3m

dr′

1− 2m
r′ −

r′2

l2

.

We have −∞ < r∗ < ∞, with the limit r∗ → −∞ corresponding to the
black hole horizon at r = rh and r∗ →∞ corresponding to the cosmological
horizon at r = rc. The metric becomes

g =

(
1− 2m

r
− r2

l2

)(
−dt2 + dr2∗

)
+ r2

(
dθ2 + sin2 θ dφ2

)
,

with r understood to be a function of r∗. In these coordinates, the wave
equation takes the form of

−∂2t (rψ)+∂2r∗(rψ)+
(
1− 2m

r
− r2

l2

)[
1

r2
∆S2(rψ)−

(
2m

r3
− 2

l2

)
(rψ)

]
= 0 .

It has been shown by [4, 5] (see also [6]) that solutions to (2) arising
from compactly supported data at t = 0 have an asymptotic expansion at
late times. For any ν > 0, we may write

ψ(t, r∗, θ, φ) =
∑

Re(σk)>−ν

m(k)∑
j=1

aj,kt
je−iσkt

1

r
wj,k(r∗, θ, φ) +O

(
e−νt

)
,

as t → ∞ , (3)

for some constants aj,k ∈ C. The (complex) frequencies σk are determined
by solving the equation

L̃w := ∂2r∗w+σ
2w+

(
1− 2m

r
− r2

l2

)[
1

r2
∆S2w −

(
2m

r3
− 2

l2

)
w

]
= 0 , (4)
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subject to the condition that w is outgoing

w ∼ eiσ|r∗| , as |r∗| → ∞ . (5)

Such solutions exist only when σ belongs to a discrete set of values in the
lower half-plane, and we have w0,k := w. Each such frequency has a multi-
plicity m(k) ∈ Z≥0, and the functions wj,k can be determined by iteratively
solving

L̃wj,k = wj−1,k ,

subject to the condition that wj,k is outgoing.
The functions r−1tje−iσtwj,k are solutions to (2) which oscillate and de-

cay in time. We call such a σ a quasinormal frequency (or resonance) and
the corresponding wj,k a quasinormal mode (or resonant state).

We note that while (4), with the boundary condition (5), appears to
be an eigenvalue problem, this is not really the case since the outgoing
boundary condition requires that w grows as |r∗| → ∞. Accordingly, the
discreteness of the quasinormal mode spectrum is not a priori obvious. This
can be resolved by the method of complex scaling [7] or, alternatively with
the approach of Vasy [8] (see also [9]). This latter approach permits us to
relax the assumption that our initial data be compactly supported to an
assumption of smoothness with respect to the coordinates of the analytic
extension of the static patch.

3. Incompleteness of the quasinormal modes

One might hope that by sending ν →∞ in (3), we can write

ψ(t, r∗, θ, φ)
?
=
∑
σk

m(k)∑
j=1

aj,kt
je−iσkt

1

r
wj,k(r∗, θ, φ) . (6)

However, the expansion (3) is valid as t → ∞, not as ν → ∞. To see why
this must be the case, we will construct a solution to (2) which cannot be
written as a sum over quasinormal modes.

Consider figure 1. It shows the Penrose diagram of the maximal ana-
lytic extension of the Schwarzschild–de Sitter spacetime. The static patch
corresponds to the central diamond of the figure, it is bounded to the future
by the future black hole horizon H +

h and future cosmological horizon H +
c ,

and by the corresponding horizons H −
h , H −

c in the past.
We now suppose that we specify non-zero functions ψh : H +

h → C and
ψc : H +

c → C, which are smooth and compactly supported. Their support
is indicated in figure 1 by the thicker lines on the horizons. By introducing a
spacelike surface which intersects H +

h and H +
c to the future of the support
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Fig. 1. Construction of the counterexample.

of ψh and ψc, respectively, and imposing trivial Cauchy data on this surface,
we can solve construct a solution to (2) on the static patch such that

ψ|H +
h

= ψh , ψ|H +
c

= ψc .

This follows from standard results concerning characteristic initial value
problems for the linear hyperbolic PDE (we solve ‘backwards’ in time, i.e.
down the Penrose diagram). By considering the Cauchy data induced by
ψ on a spacelike surface Σ, we can if we wish view ψ as solving a forward
evolution problem

Since solutions of the wave equation must respect the causality of the
underlying spacetime, the support of the solution to our equation must lie
within the shaded region. In other words, for any fixed r∗, there exists τ(r∗)
such that ψ(t, r∗, θ, φ) = 0 for all t > τ(r∗). Comparing this with (3), we
see that the expansion can only be valid if ak = 0. Thus, if it were the case
that (6) holds for this solution, we would deduce that ψ ≡ 0. However, this
clearly cannot be the case, as by construction, ψ does not vanish on H +

h .
We conclude then that the expansion (3) cannot hold in general. In fact,

since (2) is linear, we can always add the solution constructed above to any
other solution to see that for generic solutions (3) fails.

We should briefly compare this result to those obtained in [10, 11]1.
These papers show that for one-dimensional wave equations with potential,
if the initial data is compactly supported, then the solution exactly equals
its quasinormal expansion at late times. That is (3) holds on regions of
bounded r∗ for all t > T , where T is some constant determined from the

1 We thank Andrzej Rostworowski for bringing the second of these papers to our at-
tention.
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initial data. This is not inconsistent with our discussion above. Indeed,
our solution does equal its quasinormal expansion for sufficiently late times.
However, it does not equal its quasinormal expansion for all times.

4. Conclusion

We have shown that, in contrast to the situation for normal modes on
a bounded domain, the quasinormal modes of the Schwarzschild–de Sitter
black hole are not complete. In fact, we did not make use of any of the
detailed properties of the metric to establish this, so the result holds on
much more general black hole spacetimes.
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