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We summarize recent results on D-dimensional Robinson–Trautman
solutions of Einstein’s gravity in the presence of a conformally invariant
non-linear electromagnetic field and a cosmological constant. These space-
times contain static dyonic black holes with various horizon geometries
and their time-dependent radiating generalizations, as well as a class of
stealth solutions. Extensions to f(R) and the Gauss–Bonnet gravity are
mentioned.
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1. Introduction

The Robinson–Trautman (RT) spacetimes [1, 2] are characterized by
the existence of an expanding, shearfree, and twistfree congruence of null
geodesics, and provide a natural arena for the study of static black holes and
their time-dependent generalizations, as well as other radiative spacetimes
(see reviews [3, 4] and references therein). This class of metrics can be
defined in an arbitrary dimension D [5, 6], and D > 4 Einstein–Maxwell
solutions have been studied in [6–8].
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While the linear Maxwell theory is not conformally invariant whenD 6= 4,
a conformally invariant non-linear electrodynamics inD dimensions has been
proposed in [9]. Considering a minimal coupling to the Einstein gravity, the
action is given by

S =

∫
dDx
√
−g
[
1

κ
(R− 2Λ)− 2βFD/4

]
, F ≡ FµνFµν , (1.1)

where κ and β are coupling constants, and F = dA.
The corresponding equations of motion read

1

κ
(Gµν + Λgµν) = βFD/4−1 (DFµρF

ρ
ν − gµνF ) , (1.2)

1√
−g

∂µ

(√
−gF

D
4
−1Fµν

)
= 0 . (1.3)

The RHS of (1.2) is traceless, so that the Ricci scalar is a constant
proportional to Λ.

Let us observe that for D 6= 4, solutions of the theory (1.1) are stealth
precisely when F = 0, which also ensures that Eq. (1.3) is identically sat-
isfied. In other words, any closed 2-form F provides a solution to the the-
ory (1.1) in any Einstein spacetime. For D = 4, Eq. (1.1) reduces to the
Einstein–Maxwell action.

Since F
D
4 must be a real quantity, D must be a multiple of 4 when

F < 0. Requiring the energy density to be non-negative (weak energy con-
dition WEC) means βFD/4−1 ≥ 0, so that in the following we will assume:
(i) β > 0 if F > 0, or if F < 0 with D/4 being odd; (ii) β < 0 if F < 0
with D/4 being even; (iii) β can have any sign in the stealth case F = 0.
Since Tµν is traceless, the strong energy condition becomes equivalent to the
WEC and is thus also satisfied.

In our recent work [10], we studied the class of RT solutions to the the-
ory (1.1) under the assumption that the RT null vector field k is an eigen-
vector of the electromagnetic field F (i.e., it is aligned). In the following, we
summarize the main results obtained for non-stealth fields (some comments
on the stealth case can be found in [10]).

2. Static black holes

The RT solutions of [10] contain, in particular, a family of dyonic black
holes. The metric reads

ds2 = r2hijdx
i dxj−2 dudr − 2H du2 , (2.1)

2H = K − λr2 − µ

rD−3
+

Q2

rD−2
, (2.2)

and the electromagnetic field is
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F =
e

r2
dr ∧ du+

1

2
Fij(x)dx

i ∧ dxj , (2.3)

with

Q2 ≡ 2κβF
D
4
−1

0

(
b2

D − 2
+ e2

)
, F0 ≡ b2 − 2e2 , b2 ≡ FikFjlhijhkl .

(2.4)
In the above expressions, K = 0,±1, λ = 2Λ

(D−2)(D−1) , µ, e, and b are
constants, Latin indices i, j, . . . = 1, . . . , D − 2 label the spatial coordinates
xi (also denoted collectively simply as x), and the base-space metric hij(x)
represents a Riemannian Einstein space of dimension D − 2 and scalar cur-
vature R = K(D − 2)(D − 3), with h ≡ dethij .

The spatial part of F and the base-space metric must obey the following
conditions(√

hhikhjlFkl

)
,j
= 0 , F[ij,k] = 0 , b2hij = (D − 2)FikFjlh

lk . (2.5)

This implies that, when Fij 6= 0, the base space must be almost-Kähler
[11] (in addition to being Einstein) and, in particular, it cannot be a round
sphere (but it can be, e.g., flat, cf. [7, 10]). This means that dyonic (or
purely magnetic) solutions cannot be asymptotically flat. However, in the
purely electric case (Fij = 0), the base manifold can be any Einstein space,
and asymptotically flat solutions (with Λ = 0) have been known for some
time [9].

The above spacetimes generically represent black holes, which are static
in regions where H > 0. There is a timelike curvature singularity at r = 0
and, in the region of r > 0, positive values of r for which H = 0 represent
the Killing horizons. Similarly as for the four-dimensional (A)dS–Reissner–
Nordström metrics, the structure and number of horizons depend on the
signs of the parameters Λ, K, and µ, and are essentially D-independent —
cf. [10] for details and plots of H(r) for various values of the parameters.

Interestingly, thanks to the fact that the Ricci scalar of (2.2) is constant,
the above black hole solutions can be easily extended to theories for which
the Einstein term in (1.1) is replaced by a generic f(R) scalar — examples
have been given in [12, 13] (see also [14])1. Extensions to the Gauss–Bonnet
gravity are also known, for which the metric function H is instead modified
in a non-trivial way [13, 18].

1 For the same reason, metrics (2.1), (2.2) can also be interpreted as vacuum solutions
of certain f(R) gravities (in which case Q2 is an integration constant), cf. [15–17].
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3. General (non-stealth) solution

The family of black holes described in Section 2 is a subset of more
general RT solutions of (1.1). The complete RT class is still described by
metric (2.1), but now the electromagnetic field is

F =
e

r2
dr ∧ du+

(e,i
r
− ξi

)
du ∧ dxi +

1

2
Fijdx

i ∧ dxj , (3.1)

where ξi = ξi(u, x), and H is defined by

2H = K +
2

D − 2

(
ln
√
h
)
,u
r − λr2 − µ

rD−3
+

Q2

rD−2
, (3.2)

where (2.4) still applies. K and λ are as in Section 2, whereas here the
Einstein metric hij = h1/(D−2)(u, x)γij(x) and the quantities e, Fij , µ, and b
in general depend on (u, x).

In addition to the second and third equations of (2.5), one now needs to
solve the more complicated set (where (3.4) replaces the first of (2.5))

Fij,u = ξi,j − ξj,i ,
(
F

D
4
−1

0

√
hhijξj

)
,i

=

(
F

D
4
−1

0

√
he

)
,u

,

(3.3)

F
D
4
−1

0

√
hhije,j =

(
F

D
4
−1

0

√
hhikhjlFkl

)
,j

, (3.4)

µ,i = 2κβDF
D
4
−1

0

(
eξi − Fikξjhkj

)
, (3.5)

(D − 2)µ,u = −(D − 1)µ
(
ln
√
h
)
,u
− 2κDβF

D
4
−1

0 hijξiξj . (3.6)

Here, the base space is almost-Hermitian. Note that Eq. (3.6) must be
modified in the special case of D = 4 [2–4, 7, 10].

The line element of the complete RT class is thus in general time-
dependent. Furthermore, apart from the electric and magnetic components
e and Fij , the electromagnetic field (3.1) may contain also a radiative null
term Fui, which is related to a possible mass loss (or gain) as the retarded
time u evolves, encapsulated in Eq. (3.6). The energy flux along the RT null
vector field k = ∂r is given by βDFD/4−10 hijξiξjr

2−D [10].
For the sake of definiteness, a simple explicit time-dependent solution

(not presented in [10]) with a flat base space hij = δij is given for D = 8 by

Fij = 0 , e = e0(c1u+ 1)1/5 , ξi dx
i =

3c1e0x1 + 5c0

5 (c1u+ 1)4/5
dx1 ,

µ =
16e20βκ

3c1

[
−(3c1e0x1 + 5c0)

2

5(c1u+ 1)1/5
+ 5c0

2

]
+ µ0 , (D = 8) , (3.7)
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where e0, c0, c1, and µ0 are constants. Note that the limit c1 → 0 gives
rise to a function µ linear in u (and to a static solution if one sets, further,
c0 = 0).

Equations defining marginally trapped surfaces [19] and dynamical hori-
zons [20] in the above spacetimes have been also obtained in [10]. Those are
to be understood as preliminary results needed in order to define an analog
of the past horizon in RT spacetimes, in the spirit of [21]. See also [22–27]
for related results.

This work has been supported by research plan RVO: 67985840 and
research grant GAČR 19-09659S.
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