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We explore the possibilities of dark matter production in a U(1) exten-
sion of the Standard Model, also called the super-weak model. The freeze-
in and freeze-out mechanisms are described in detail, assuming the lightest
sterile neutrino in the model as the dark matter candidate. In both scenar-
ios, we present the favoured parameter space on the plane of super-weak
coupling versus the new gauge boson mass. We discuss the experimental
constraints limiting each case and outline possibilities of detection.
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1. Introduction

The existence of dark matter is a well-established experimental fact.
However, despite the extreme success of the Standard Model of particle
physics in describing most of the observations in particle physics, it is un-
able to account for this seemingly invisible matter in the Universe. Lots of
models have been proposed to solve this riddle, mostly relying on either the
modification of our understanding of gravity or the extension of the Stan-
dard Model of particle physics. A common pitfall of these theories is that
they focus on a single aspect beyond the Standard Model (BSM) physics,
while leaving others unexplored. The super-weak model is an attempt at
formulating an extension of the Standard Model [1] capable of explaining
multiple sides of the BSM puzzle.

2. The super-weak model

The super-weak model is a simple extension of the Standard Model by a
U(1)z gauge group, originally introduced in Ref. [1]. The model was designed
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to be phenomenologically simple, yet capable of explaining a number of
shortcomings of the Standard Model. In particular, (i) the exploration of
the origin of neutrino masses and neutrino oscillations has been started in
Refs. [2, 3], (ii) cosmic inflation and electroweak vacuum-stability have been
discussed in Ref. [4], and (iii) dark matter scenarios with the lightest sterile
neutrino have been studied in Ref. [5].

The particle spectrum is extended to include three sterile neutrinos Ni,
a singlet complex scalar χ, and the gauge boson of the new U(1)z group Z ′.
The anomaly-free charge assignment and the spectrum are presented in Ta-
ble 1.

Table 1. Particle content and charge assignment of the super-weak model.

SU(2)L U(1)y U(1)z

QL 2 1/6 1/6
UR 1 2/3 7/6
DR 1 −1/3 −5/6
LL 2 −1/2 −1/2
NR 1 0 1/2
eR 1 −1 −3/2

φ 2 1/2 1
χ 1 0 −1

2.1. The gauge sector

The super-weak gauge group gets spontaneously broken when the scalars
in the theory acquire non-zero vacuum expectation values. Similarly to the
Standard Model, only the electromagnetic U(1)em gauge group remains a
true symmetry of the theory

GSW = SU(3)c ⊗ SU(2)L⊗U(1)y ⊗U(1)z → SU(3)c ⊗U(1)em . (1)

Through the Higgs mechanism, some of the gauge bosons obtain masses.
The gauge eigenstates (Bµ, W

3
µ , B

′
µ) are rotated to the mass eigenstates

(Aµ, Zµ, Z
′
µ), where in contrast to the Standard Model, we can define three

angles of rotation: θW (Standard Model Weinberg angle), θZ and θε. The
rotation by θε (mixing in the Bµ–B′µ plane) is unphysical as it gets cancelled
in the Lagrangian by the requirement of the photon being massless.

In the super-weak model, the Standard Model weak neutral current is
modified due to the small, but non-zero mixing between the Z and Z ′ bosons
(θZ � 1). The covariant derivative for the neutral currents is
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Dneut
µ ⊃ −i

(
QAAµ +QZZµ +QZ′Z ′µ

)
, (2)

where the effective charges are defined by

QA = (T3 + y) |e| ≡ QSM
A , (3a)

QZ =
(
T3 cos

2 θW − y sin2 θW
)
gZ0 cos θZ − ζgz sin θz = QSM

Z +O
(
g2z
g2
Z0

)
,

(3b)

QZ′ =
(
T3 cos

2 θW − y sin2 θW
)
gZ0 sin θZ − ζgz cos θz . (3c)

Here, we introduced the notation g2Z0 = g2L + g2y and the effective U(1)z
charge ζ = z − ηy (charges depend on the fields), where η is connected to
the gauge kinetic mixing of the U(1) groups.

2.2. Parameters of the model

In total, there are 5 parameters in the model that are relevant for dark
matter studies: (i) the gauge coupling gz, (ii) the mass of the Z ′ boson,
(iii) the Z–Z ′ mixing angle θZ , (iv) the U(1) gauge mixing η, and (v) the
smallest of the sterile neutrino masses. The dark matter candidate in the
model is the lightest sterile neutrino N1; the other ones are assumed to be
heavy and decouple from the dark matter calculations.

(i) The gauge coupling gz has to be small when compared to the elec-
troweak couplings, O(gz/gZ0) � 1 in order to obey various particle
physics constraints, such as electroweak precision measurements.

(ii) The mass of the Z ′ boson, MZ′ , is chosen such that MZ′ � MZ is
satisfied. In particular, we will use MZ′ = [10, 200] MeV, where the
upper bound is needed to avoid direct decays into muons.

(iii) Assuming that (i) and (ii) are satisfied, the Z–Z ′ mixing angle is

tan(2θZ) =
4ζφgz
gZ0

+O
(
g2z
g2
Z0

)
� 1 . (4)

As such, the mixing θZ is not a free parameter, but similarly to the
Weinberg angle, it is a function of the couplings.

(iv) The value of the U(1) gauge mixing parameter η depends on the renor-
malization scale µ, and its exact value can be obtained from its renor-
malization group equation. At relevant scales, η = O(0.1). To simplify
calculations, we will use η = 0, since it does not introduce any quali-
tative difference in the results.
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(v) We assume that the lightest sterile neutrino is either a keV-scale (freeze-
in), or an MeV-scale (freeze-out) particle. Meanwhile, for the heavier
sterile neutrinos, M2,3 &MZ , which allows for active neutrino masses
in their allowed region with similar Yukawa couplings as in the charged
lepton sector.

3. Dark matter production

Dark matter production is most commonly achieved in extensions of the
Standard Model by using so-called portals: interactions connecting the dark
sector to the Standard Model. In the super-weak model, we consider the so-
called vector boson portal, with Z ′ being the main connection between the
Standard Model particles and the dark matter candidate sterile neutrino N1.

The Z ′ gauge boson is assumed to be light so that it can decay only to (i)
an electron–positron pair, (ii) a pair of Standard Model neutrinos, or (iii) a
pair of N1 sterile neutrinos (provided that 2M1 < MZ′). These vertices (up
to small corrections of order O(g2z/g2Z0)) are given as

ΓµZ′νiνi ' Γ
µ
Z′N1N1

' −igz
2
γµ , ΓµZ′ee ' igzγ

µ

[
2 cos2 θW −

1

2

]
. (5)

Vertices with heavier fermions may appear in scattering processes, however,
the mass of Z ′ sets the energy scale where dark matter is dominantly pro-
duced, as such the main contribution will come from only those listed in
Eq. (5).

In cosmology, we use the Boltzmann equation to describe the evolution
of a particle species exposed to some interactions in an expanding Universe
filled with a finite temperature plasma of particles. It is convenient to define
the comoving number density Y = n/s to factor out the Hubble expansion.
The Boltzmann equation for a particle species a produced via scatterings
and decays is

dYa
dz

=

√
π

45
g∗(T )

mPlΛ

z2
〈σab→f1f2vMøl〉

[
Yeq
a Yeq

b

Yeq
f1
Yeq
f2

Yf1Yf2 − YaYb

]

+

√
45

4π3
g∗(T )

g∗s(T )

mPlz

Λ2

〈
Γa→f ′1f ′2

〉[Yf ′1Yf ′2
Yeq
f ′1
Yeq
f ′2

Yeq
a − Ya

]
. (6)

Here, z = Λ/T with Λ being a relevant energy scale in the problem, while
the notation 〈. . . 〉 denotes thermal averaging.

The thermally averaged cross section is given by

〈σvMøl〉 =
1

8m2
inT [K2(min/T )]2

∞∫
4µ2

ds σ(s)(s− 4min)
2√sK1

(√
s

T

)
, (7)
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where µ = max(min,mout), and Ki(x) are the modified Bessel functions
of the second kind. Notice that (i) the integral can be dominated by the
resonance in σ(s), and (ii) at low temperatures 〈σvMøl〉(T � min) → 0,
which can lead to decoupling.

In contrast to scatterings, thermal averaging for the decay rate of a
particle with mass m is known analytically

〈Γ 〉 = K1(m/T )

K2(m/T )
Γ . (8)

The thermally averaged decay rate is a monotone increasing function of time,
with 〈Γ 〉(T � m)→ Γ .

3.1. Freeze-out scenario

The freeze-out mechanism of dark matter production assumes that the
dark sector was in equilibrium with the cosmic plasma at high temperatures.
As the temperature falls, processes which involve the creation and annihila-
tion of dark matter particles become slow with respect to the Hubble rate,
and a non-zero abundance can freeze-out. The mechanism thus suggests that
the relevant processes to consider are annihilations of the Standard Model
particles producing our dark matter candidates, the N1 sterile neutrinos.

In the super-weak model, for the freeze-out scenario, we consider the
lightest sterile neutrinos to have masses of O(10) MeV, thus freeze-out will
happen at O(1) MeV temperatures. Assuming that the active–sterile mixing
is tiny, there are only two processes which contribute to freeze-out, the
annihilation of electrons or Standard Model neutrinos into sterile neutrinos.

In the freeze-out mechanism, the smaller the cross section, the larger
the relic density. As large couplings are constrained by experiments (e.g.
NA64), this usually leads to overproduction of dark matter. This well-known
issue can be circumvented by exploiting resonant production of dark matter:
having the mediator Z ′ be close to twice the mass of N1. In Fig. 1, we
showcase the resonant amplification of the thermally averaged cross section.

We have solved the Boltzmann equation Eq. (6) for the N1 sterile neu-
trino in the freeze-out scenario and tuned the parameters of the model (M1,
MZ′ , and gz) to reproduce the final relic densities required for the measured
dark matter energy density. We show the parameter space with various con-
straints in Fig. 2. We found that resonant amplification of the thermally
averaged cross section is mandatory in order to avoid established upper
bounds on the couplings. In the super-weak model, there is a non-vanishing
parameter space, where the lightest sterile neutrinos can account for the
total dark matter energy density. The effect of the resonance is seen in the
figure for MZ′ ' 2M1, indeed without this amplification of the thermally
averaged cross section the parameter space would be excluded by NA64.
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Fig. 1. The thermally averaged cross section forM1 = 10 MeV andMZ′ = 30 MeV.
At higher temperatures, 〈σvMøl〉 is totally dominated by the resonance contribution.
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Fig. 2. The parameter space in the freeze-out scenario: required couplings gz versus
the mass of the new gauge boson MZ′ for various sterile neutrino masses M1.
Constraints are detailed in Sec. 3.3.

3.2. Freeze-in scenario

Contrary to the freeze-out mechanism in the freeze-in case, the dark
sector is never in equilibrium with the rest of the cosmic plasma. In par-
ticular, it may be assumed that the dark particle densities are zero at some
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high temperatures (for example at Trh, after reheating). After the zero
initial abundance, dark matter is created slowly by decays of heavier par-
ticles. The mechanism requires that dark matter remains suppressed com-
pared to equilibrium densities, which forces us to choose feeble couplings of
gz = O(10−10) or less. Since the dark matter particles are assumed to be
stable, once the heavier particles have all decayed, a constant dark matter
abundance freezes in. The mechanism suggests that the important processes
are decays of heavier particles into dark matter.

A feature of the freeze-in mechanism could be that it has more parame-
ters. The freeze-out scenario had only parameters connected to the particle
physics model (coupling and masses), meaning that cosmology was essen-
tially fixed. In the freeze-in case, however, we have the freedom of choosing
initial values: the initial temperature T0 and the comoving density at that
time Yi(T0). If we choose T0 to be the reheating temperature, then these ini-
tial conditions have a deep connection to the underlying cosmological model,
which the freeze-out case did not have. A detailed analysis of the choice of
initial conditions shows that their exact values do not really affect low-energy
results: if T0 � Λ and Yi(T0) � Y∞, then any value of these 2 parameters
will result in the same dark matter relic abundance. Here, Λ is the tem-
perature (energy) scale where dark matter is dominantly produced, i.e., the
mass of the decaying particle producing dark matter. Choosing not to com-
ply with these restrictions on the initial conditions will lead to interesting
results, nevertheless, these will usually require fine-tuning to fit measure-
ments and, for simplicity, we avoid it in this work (we use Yi(T0) = 0).

In the super-weak model, for the freeze-in scenario, we use lighter sterile
neutrinos with masses of O(10) keV. The requirement for a feeble coupling
tells us that the only relevant way to produce dark matter will be through
the decays of Z ′ bosons. However, as Z ′ is also a dark sector particle, we
have no reason to assume that their initial abundance was different from that
of the sterile neutrinos. This means that we have to solve the Boltzmann
equation for the out-of-equilibrium distributions of Z ′ bosons as well of the
N1 sterile neutrinos. The two form a coupled system of differential equations,
where Z ′ is mainly created by the coalescence of Standard Model leptons,
e−+e+ → Z ′ and νi+νi → Z ′, and destroyed by the inverse of these processes
along with the Z ′ → N1 + N1 decay (the coalescence of N1 neutrinos will
be negligible due to the small population of N1 particles). In fact, since N1

is only created by Z ′ decays, one can approximate the final sterile neutrino
density based on the branching ratio of Z ′ into sterile neutrinos as Y∞ =
max(YZ′)B(Z ′ → N1 +N1).
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We show the favoured parameter space we obtained for the freeze-in
scenario in the super-weak model in Fig. 3. As expected, the couplings are
required to be feeble, gz . 10−10. Additionally, we can observe that for
larger sterile neutrino masses, the required couplings decrease: this is due
to the fact that 0.265 = ΩDM ∝ M1Y∞ ∝ g2zM1 (this scaling is essentially
exact due to the sterile neutrinos being very light, M1 �MZ′ , and the relic
abundance being independent of M1).
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g z

SN1987A

M1 = 10 keV
M1 = 20 keV
M1 = 50 keV
M1 = 100 keV

Fig. 3. Parameter space in the freeze-in scenario: the required couplings to repro-
duce dark matter abundances are plotted versus the mass of the mediator Z ′ boson
for various sterile neutrino masses M1. Constraints can be obtained on the model
from astrophysical observations, most notably from the supernova SN1987A.

3.3. Experimental constraints

In this section, we review the experimental constraints that apply to
our model, both in the freeze-out and in the freeze-in scenario. We detail
those that have already been checked (such as those shown in Figs. 2–3),
and outline possible future work in this field.

The freeze-out mechanism is mainly constrained by particle physics ex-
periments: in particular, the measurement of the anomalous magnetic mo-
ment of the electron, and NA64. These experiments provide stringent upper
bounds on the coupling as a function of the Z ′ mass, as the shaded areas
indicate in Fig. 2. The stronger constraint arises from NA64, which looks
for missing energy in semi-bremsstrahlung processes, where in the final state
instead of a photon, a dark photon is created. This dark photon can decay
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into invisible particles (such as sterile particles, or even the Standard Model
neutrinos), which would produce an event with missing measured energy.
The non-observation of such events provides an upper bound for the dark
photon model (in particular, it constrains the kinetic mixing) which can be
translated to our model. In Fig. 2, we see that the NA64 upper bound
makes the use of resonant dark matter production necessary. Astrophysical
constraints provide only a weak lower bound on the parameter space which
is avoided in our model.

Next to these upper bounds provided by particle physics, we also find a
tentative cosmology-based upper bound on the Z ′ mass, MZ′ ≤ mπ. This
bound is based on the pion-enhanced proton-to-neutron conversion before
the Big Bang Nucleosynthesis (BBN). If the Z ′ bosons are allowed to decay to
pions, then those pions can affect the ratio of protons to neutrons at the onset
of BBN, thus modifying standard nucleosynthesis. This provides a bound
on the pion production rate. The calculation of this rate is complicated and
requires further work. However, it is not strictly necessary in our model,
since the favoured parameter region where MZ′ > mπ is already excluded
by e.g. NA64 (as shown in Fig. 2).

Astrophysics and cosmology-based bounds become more relevant for the
freeze-in scenario. In this case, the feeble coupling gz . 10−10 makes it
impossible to measure the effects of the new interaction in current particle
physics experiments. However cosmology and certain astrophysical objects
may provide us with meaningful constraints which operate exactly in this
feeble coupling range. Firstly, stellar cooling is an established way of con-
straining models with light new particles (e.g. certain models with axions).
Our dark particles are much heavier than those investigated in stellar cooling
reports, and these constraints are avoided. Secondly, supernova explosions
can be used to constrain BSM models based on energy loss in terms of in-
visible particles, or the production of gamma rays. These bounds are not
trivially avoided in our model. In fact, they are relevant. The supernova
cooling bound is based on the single experimentally measured explosion of
SN1987A. The phenomenological bound says that the luminosity of dark
particles cannot be higher than that of the Standard Model neutrinos. Due
to the opacity effects within the supernova, this constraint provides an ex-
clusion band in the parameter space, such as the ones shown in Figs. 2–3.
In both cases the calculated exclusion bands are approximations: the green
one only takes into account interactions with the muons, whereas the purple
one also includes the process e−+e+ → Z ′. Of course, many more processes
are available in our model and their inclusion within this calculation is an
interesting project.
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In conclusion, the freeze-out scenario is mostly constrained by particle
physics, while freeze-in is mostly constrained by astrophysics. In both cases,
we see the bounds are near the parameter space we are interested in. On
the particle physics side, future experiments, such as e.g., Belle II, NA64, or
LDMX will be able to probe the coupling range of gz ∈ [10−6 − 10−4], and
provide us with the necessary data to test our model. On the astrophysics
side, we can only hope for a new supernova explosion event not too far from
Earth. Such a measurement would allow us to increase our understanding of
these extraordinary events, and to provide us with luminosity measurements
of much higher accuracy.

4. Conclusions

In this paper we have shown that the super-weak model can account
for dark matter in the form of the lightest sterile neutrino. The freeze-out
and freeze-in scenarios were investigated and shown to be able to provide
us with a non-vanishing parameter space which avoids current experimen-
tal constraints. Some of these constraints were briefly explored, and the
possibility of future experiments to test our model was established.
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