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In the case of fermion mixing, we propose to use only one of the usual
on-shell renormalization conditions at 1-loop and to use off-diagonal mass
counterterms. These new counterterms allow for a natural separation of
gauge-dependent parts as well as UV divergent parts, for example, the off-
diagonal mass counterterms can be chosen to be gauge-independent and to
contain all the UV divergences that would otherwise be included in field
renormalization. Containment of UV divergences in off-diagonal mass coun-
terterms prevents the migration of said divergences from the mass term to
other terms in the Lagrangian. This naturally allows to not associate coun-
terterms with mixing matrices and take them to be always renormalized.
In addition, we argue that it is more consistent to not have counterterms
for mixing matrices and instead have off-diagonal mass counterterms. Fi-
nally, the renormalization scheme is truly universal as it is based on mass
structures and also includes absorptive parts where possible.

DOI:10.5506/APhysPolBSupp.15.2-A15

1. Introduction

Renormalization in models without particle mixing is already a textbook
material (at least at 1-loop), while models that do contain particle mixing
pose a more challenging case. The usual on-shell (OS) approach is to require
a diagonal propagator on the mass shell
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for (i 6= j) as proposed in [1] in combination with the usual renormalization

ψ0
L,Rj → ZL,RjiψL,Ri ,

m0
i → mi + δmi . (2)

Here, it is understood that i and j are flavour indices and that the mass
counterterm is diagonal. By applying the above no-mixing conditions, one
gets a solution for field renormalization Z as well as its Hermitian conju-
gate Z† in terms of self-energy scalar functions. However, it has been noted
that the solutions suffer from over-specification due to absorptive parts above
particle production thresholds [2, 3]. The absorptive parts break the pseudo-
hermiticity of the self-energy, namely Σ 6= γ0Σ†γ0, therefore, naive Hermi-
tian conjugation of the field counterterms does not produce the Hermitian
conjugate solution, i.e. (ZL,R)† 6= Z†L,R. In other words, absorptive parts
break the hermiticity of the Lagrangian. A simple way out of this is to drop
the absorptive parts as suggested in [4]. However, even with the absorptive
parts dropped, the field renormalization constants enter the renormalization
of mixing matrices quite generally as one can relate mixing angle and field
renormalizations [5], hence, care must be taken in fixing field counterterms.
In addition, there are criteria for mixing matrix counterterms that are not
trivially satisfied if one uses field counterterms for defining mixing counter-
terms. For example, it has been formulated that the CKM matrix [6–8] in
the Standard Model (SM) should:

1. correctly cancel UV divergences in the Wud vertex,

2. be gauge-independent, and

3. preserve unitarity of the bare CKM matrix [9].

Points 1. and 3. seem to be easily achievable already in the very first attempt
to renormalize the CKM matrix [10], where

δV ∼ −δZA,u
L V + V δZA,d

L (3)

and ZA denote the anti-Hermitian parts of field renormalization. However,
the above counterterm definition is gauge-dependent, ∂ξδV 6= 0, due to
the gauge dependence of field counterterms. There have been quite a few
attempts [9, 11–16] to get rid of this gauge dependence, most of which are
fairly unnatural, non-universal, and hard to implement.

There is one approach that stands out as it takes care of gauge depen-
dence by separating the gauge-independent part into off-diagonal mass coun-
terterms and using those to define the CKM counterterm via a “1-loop ro-
tation” instead of using field counterterms [17, 18]. While the approach
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naturally gets rid of gauge dependence, there are other problems: there is
no explicit field renormalization, the definition of the mixing matrix coun-
terterm actually leaves the Lagrangian unrenormalized, the approach is non-
universal, and the counterterms are expressed in terms of self-energies only
for the SM. Similarly, there the authors chose to drop the absorptive parts.

On the other hand, one may include the absorptive parts by introducing
an additional set of field renormalization constants, although, at the price of
hermiticity. This additional set of counterterms ensures the OS no-mixing
conditions and gauge independence of the Wud vertex as long as the CKM
matrix counterterm is gauge-independent. In turn, a third set of field renor-
malization constants has to be used for the CKM counterterm to ensure its
gauge independence. All of this has been noted in [3].

Finally, there is a comparable multitude of mixing renormalization ap-
proaches for multi-Higgs as well as SUSY models ([19–27] to name a few),
although, it is worth mentioning that more often than not the mixing renor-
malization in SUSY models is done by using off-diagonal mass counterterms
and not introducing any counterterms for mixing matrices. We will discuss
the consistency of both scenarios before the conclusions.

2. Setup

In the light of the introduction, we set up our renormalization in the
following way. We include the absorptive parts and also keep the Lagrangian
Hermitian by dropping the no-mixing condition for outgoing particles such
that only

1

/p−mj
Σji

(
p2
)
ui = 0 , (i 6= j) (4)

remains. In order to separate the off-diagonal gauge-dependent contribu-
tions, we use off-diagonal mass counterterms

δmi → δmji = PLδm
L
ji + PRδm

R
ji . (5)

Here, PL,R are left- and right-handed projectors, in addition, hermiticity of
the Lagrangian requires (

δmL
)†

= δmR (6)

and it should be understood that the renormalized mass m is diagonal (this
means that the bare mass is not diagonal due to the counterterm). Other-
wise, the renormalization is standard and we can write down the self-energy
decomposition as follows:
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δZ†Ljimi +

1

2
mjδZRji

)
PR . (7)

One can also write down the self-energy in terms of Feynman diagrams

Σji
(
p2
)

= δij +
1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI

i j

+
1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI

i j
+ i j , (8)

where we also include unrenormalized tadpoles, this is equivalent to using
the FJ scheme [19, 28].

Having the self-energy decomposition it is fairly simple to apply the
no-mixing condition on incoming particles and arrive at a relation between
the off-diagonal mass and field counterterms in terms of self-energy scalar
functions

δZLji

= − 2

m2
i−m2

j

(
m2
iΣ

L
ji

(
m2
i

)
+mimjΣ

R
ji

(
m2
i
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+mjΣ

sL
ji

(
m2
i

)
+miΣ

sR
ji

(
m2
i
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+

2

m2
i −m2

j

(
mjδm

L
ji +miδm

R
ji

)
, (i 6= j) (9)

with an analogous equation for the right-handed part. Further, using
(δmL)† = δmR, one can find that the Hermitian part of the field renormaliza-
tion remains unchanged w.r.t. the usual approach (except for the absorptive
parts), while the mass counterterms only contribute to the anti-Hermitian
part of field renormalization(
m2
i −m2

j

)
δZA

Lji − 2mjδm
L
ji − 2miδm

R
ji

= −
(
m2
iΣ

L
ji

(
m2
i

)
+mimjΣ

R
ji

(
m2
i

)
+mjΣ

sL
ji

(
m2
i

)
+miΣ

sR
ji

(
m2
i

))
+ H.C.

(10)

Here, H.C. stands for Hermitian conjugation and there is an analogous ex-
pression for δZA

R .
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Note that δZA
L in the above equation is multiplied by a very distinct mass

structure, namely m2
i −m2

j , which is seen neither in front of mass counter-
terms nor on the r.h.s. of the equation. In addition, this mass structure
causes numerical problems as well as singularities in the degenerate mass
limit, therefore, it makes sense to explore gauge and UV properties of the
above equation and see how the terms multiplied by m2

i −m2
j behave.

3. Exploration

3.1. Gauge dependence

Investigation of gauge dependence may be easily done by using the
Nielsen identities [29]. For fermion self-energy scalar functions at 1-loop,
one may arrive at the following gauge parameter derivatives [13, 30]:

∂ξΣ
L
ji

(
p2
)

= −miΛ
L
ji −mjΛ̄

L
ji + ΛsRji + Λ̄sLji ,

∂ξΣ
R
ji

(
p2
)

= −miΛ
R
ji −mjΛ̄

R
ji + ΛsLji + Λ̄sRji ,

∂ξΣ
sL
ji

(
p2
)

= p2ΛR
ji + p2Λ̄L

ji −miΛ
sL
ji −mjΛ̄

sL
ji ,

∂ξΣ
sR
ji

(
p2
)

= p2ΛL
ji + p2Λ̄R

ji −miΛ
sR
ji −mjΛ̄

sR
ji . (11)

Here, Λs and Λ̄s are vertex functions containing BRST sources and are
decomposed analogously to the self-energies as should be evident from the
superscripts. This allows to take a derivative w.r.t. the gauge parameter in
Eq. (10), and we arrive at(

m2
i −m2

j

)
∂ξ

(
δZA

Lji

)
− 2mj∂ξδm

L
ji − 2mi∂ξδm

R
ji

=
(
m2
i −m2

j

) (
−miΛ̄

R
ji

(
m2
i

)
− Λ̄sLji

(
m2
i

))
+ H.C. (12)

Since momenta and renormalized masses do not depend on the gauge, all
of the gauge dependence is encoded by the Λs, hence, it is evident from
the above equation that all of the gauge dependence comes multiplied by
the m2

i −m2
j mass structure. Although, one should be careful as gauge-

independent terms may also carry the same mass structure. If one does not
include the off-diagonal mass counterterms, the above equation shows the
cancellation ofm2

i −m2
j in the gauge-dependent part of field renormalization

which has been noted in [13] for fermions and in [22] for scalars. In our
case, the counterterms are not yet fixed so Eq. (12) only shows that the
gauge-dependent parts of counterterms should provide appropriate gauge
dependence. Of course, the present m2

i −m2
j mass structure on both hand

sides already implies a natural way to achieve this.
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3.2. UV divergences

Another question that we may tackle is that of UV properties. At 1-loop,
this is made fairly simple because of two things: (1) the Passarino–Veltman
functions and their UV parts are well known [31], (2) contributions to self-
energies at 1-loop are also known [32]. The contributions from a boson
(scalar or vector) and a fermion running in the loop are as follows:

ΣL,R
(
p2
)

= fL,RB1

(
p2,m2

ψloop,m
2
bos

) UV
=⇒ −fL,R

1

εUV
,

ΣsL,(sR)
(
p2
)

= mψloopf
(†)
s B0

(
p2,m2

ψloop,m
2
bos

) UV
=⇒ mψloopf

(†)
s

2

εUV
. (13)

Here, mψloop denotes the mass of the fermion running in the loop and mbos

that of a boson, fs are appropriate couplings (fL,R are Hermitian), and εUV

is from dimensional regularization with D = 4− εUV. It is clear that the UV
divergent parts do not depend on the arguments of the Passarino–Veltman
functions, which makes the application simpler. In addition, since we also
include tadpoles, they also contribute to divergent parts

ΣsL,(sR)
(
p2
)

= f
(†)
T mψloopA0

(
m2
ψloop

) UV
=⇒ f

(†)
T mψloop

2m2
ψloop

εUV
. (14)

Here, we listed the contribution from fermion tadpoles as they are the only
ones that could possibly contribute to the fermion mass structures. On the
other hand, particles in the loop receive an index distinct from those of
external particles and cannot be used for the mass structures. In addition,
the coupling fT includes a Yukawa coupling with indices corresponding to
external particles, however, this coupling is either non-diagonal and not
proportional to masses, or diagonal and proportional to masses. Since we
take the non-diagonal case, we see that even fermion tadpoles have no effect
on mass structures.

Putting all of this into Eq. (10), we arrive at the following divergent
parts:[(

m2
i −m2

j

)
δZA

Lji − 2mjδm
L
ji − 2miδm

R
ji

]
div

= − 1

εUV

(
−fL

(
m2
i +m2

j

)
− fR2mimj + 4f †smimψloop + 4fsmjmψloop

)
− 1

εUV

(
4m3

ψloopfTmj + 4m3
ψloopf

†
Tmi

)
. (15)

Looking at the r.h.s., it is immediately seen that there are no divergences
with the m2

i −m2
j mass structure, in turn, this means that there are no

gauge-dependent UV divergences in Eq. (10). In contrast, if we were to
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look at UV divergences of the Hermitian part of the field renormalization,
we would see UV divergences multiplied by m2

i −m2
j only. On the other

hand, there seem to be new mass structures on the r.h.s. of the above equa-
tion, namely m2

i +m2
j and 2mimj . On the l.h.s., these may be produced

by rewriting the mass counterterms such that the mass is renormalized by
shifting as well as multiplicatively, i.e.

m0 → m+PL,Rδm
L,R+

(
1 + PLδm

+ + PRδm
−)m (

1 + PLδm
− + PRδm

+
)
,

(16)
then the newly appearing mass structures multiply δm± on the l.h.s. of
Eq. (15). However, it does not seem practical to use δm± and so we only
keep δmL,R.

Again, the counterterms are not yet fully fixed but UV divergences also
imply a natural way of fixing them.

4. Definitions

Having the previous sections in mind, we define the anti-Hermitian part
of the field renormalization as the coefficient of m2

i −m2
j in Eq. (10) and in

an analogous equation for the right-handed part

δZA
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(m2
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. (17)

For the mass counterterms, the situation is made more simple by the fact
that the field renormalization is now defined and we can simply solve for the
mass counterterms

δmL
ji = 1

2

(
miΣ

R
ji

(
m2
i

)
+ΣsL

ji

(
m2
i

)
+mjΣ

L†
ji

(
m2
j

)
+ΣsR†

ji

(
m2
j

))
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2

(
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A
Rji −mjδZ

A
Lji

)
,

δmR
ji = 1

2

(
miΣ

L
ji

(
m2
i

)
+ΣsR

ji

(
m2
i

)
+mjΣ

R†
ji

(
m2
j

)
+ΣsL†

ji

(
m2
j

))
+1

2

(
miδZ

A
Lji −mjδZ

A
Rji

)
. (18)

There is a number of features that should be noted about these definitions.
First, the anti-Hermitian part of the field renormalization contains all the
possible gauge dependence and is also UV finite, while the mass counterterms
are UV divergent and gauge-independent. Second, the expressions are truly
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universal and written in terms of self-energy scalar functions, although, for
field renormalization, one has to take the coefficient ofm2

i −m2
j . In addition,

there is a fairly similar scheme in the MSSM for squarks [24], which only
shows that problems and their solutions are very similar for fermions and
bosons. Third, since the definitions rely on the m2

i −m2
j mass structure,

there are no singularities for the anti-Hermitian part of field renormalization
or mass counterterms in the degenerate mass limit — a feature wanted for
mixing renormalization [22].

Finally, the absorptive parts are taken into account such that there is no
OS mixing for incoming particles (outgoing antiparticles). Even though the
scheme seems to maximally include the absorptive parts given the hermitic-
ity constraints such an inclusion is not without its problems. For example,
since only one Lehmann–Symanzik–Zimmermann (LSZ) [33] factor has been
incorporated into field renormalization, the gauge dependence in the Wud
vertex amplitude is still not fully canceled even with a gauge-independent
CKM counterterm; for the full gauge cancellation one needs to incorporate
both LSZ factors but, again, the cost is hermiticity [3]. Another problem is
that the singularity in the degenerate mass limit appears for the Hermitian
part of field renormalization only in the absorptive parts (a similar problem
also appeared in [15]). On top of that, the absorptive parts also spoil the
bare Majorana condition, which requires δZL = δZ?R at 1-loop. Luckily,
the main goal of our scheme is that of proposing a universal set of counter-
terms (and their definitions) such that they have an appropriate gauge and
UV properties in the case of particle mixing, hence, the mentioned prob-
lems may be avoided by dropping the absorptive parts by the reader. In
addition, this set of counterterms is trivially adaptable to MS schemes and
even to schemes where two sets of field renormalization constants are used.
For the latter, instead of the anti-Hermitian part of field renormalization,
one has to use 1

2(δZL,R − δZ̄L,R) and similarly the Hermitian part becomes
1
2(δZL,R + δZ̄L,R), where δZ̄ comes from imposing the OS no-mixing condi-
tion also for outgoing particles.

5. Renormalization of mixing matrices

Finally, having the explicit definitions of mass and field counterterms,
we may discuss the renormalization of mixing matrices. For concreteness,
let us first consider the CKM matrix in the SM. In the initial approach [10],
the form of the CKM counterterm in Eq. (3) is dictated by UV divergences
appearing in the Wud vertex and unitarity of the CKM matrix. However,
this is because the anti-Hermitian parts of field renormalization are diver-
gent in the usual approach and there is nothing else to cancel these UV
divergences, in contrast, in our approach, the anti-Hermitian part of field
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renormalization is finite and there is nothing to cancel. Therefore, we can
choose to set the CKM counterterm to 0 and this is perfectly in line with
the 3 criteria listed in the introduction.

We again note that having off-diagonal mass counterterms and no mixing
matrix counterterms seems to be a fairly common approach in SUSY theo-
ries, but rather rare in non-SUSY ones. On the other hand, having or not
having mixing matrix counterterms are often presented as viable alternative
methods (e.g. [5]), however, this begs to answer the question of consistency
(or compatibility). We consider two scenarios: (1) renormalization after di-
agonalization and (2) diagonalization after renormalization. Further, as a
consistency condition, we take that the two scenarios should be related by a
basis rotation at all times — renormalization in that sense commutes with
basis rotations.

Let us take the first scenario. Consider diagonalizing the bare mass
matrix, this makes mixing matrices appear in the Lagrangian (of course,
only if particle mixing is present in a given model). Upon renormalization,
the mixing matrix receives a counterterm and the mass counterterms are
diagonal. Schematically, we may write

m0
ji

diagonalization−−−−−−−−−→ m0
i

renormalization−−−−−−−−−→ mi + δmi ,

��V 0 diagonalization−−−−−−−−−→ V 0 renormalization−−−−−−−−−→ V + δV .
(19)

On the other hand, we may take the second scenario and renormalize the
theory in a basis where the bare-mass matrix is not diagonal and there is
no mixing matrix in the Lagrangian, naturally, there are no mixing matrix
counterterms. Afterwards, we diagonalize the renormalized mass, but the
counterterm in general remains non-diagonal. Schematically, this is

m0
ji

renormalization−−−−−−−−−→ mji + δmji
diagonalization−−−−−−−−−→ mi + (V †δmV )ji ,

��V 0 renormalization−−−−−−−−−→ ����
V + δV

diagonalization−−−−−−−−−→ V���+δV .
(20)

Now we look for compatibility between the two scenarios. It is fairly evident
that one cannot switch between scenarios via a basis rotation. For example,
rotating the final step of the first scenario such that the renormalized mixing
matrix disappears (undiagonalization) and comparing with the second step
of the second scenario, it can be seen that the first scenario contains a leftover
mixing matrix counterterm (and no associated parameter! ), while there is
no such counterterm in the second scenario. Similarly, the “final states”
between scenarios also differ in their counterterms although the bases are
the same (renormalized masses are diagonal). Hence, both scenarios are
only compatible if one sets δV to 0 and always uses non-diagonal mass
counterterms even if the renormalized mass is diagonal.
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The usual approach where diagonal mass counterterms are used is only
made possible by field renormalization which takes care of non-diagonal con-
tributions. The usual field counterterms are defined by the 2-point function
but appear in other terms (e.g. the Wud vertex in the SM), hence, carrying
contributions to other terms in the Lagrangian, which causes migration of
UV divergences and this is why renormalization of mixing matrices becomes
necessary. On the other hand, if one uses non-diagonal mass counterterms,
the UV divergences stay in the mass term such that there is no need to renor-
malize mixing matrices and, as we argue, this is a step towards consistency.
This consistency implies that only the renormalized part of the bare-mass
matrix should be diagonalized, while the counterterms are, in general, non-
diagonal. In addition, it seems to us that the more consistent approach is
also easier to implement and, at least up to absorptive parts, straightfor-
wardly gives the required properties: gauge dependence, UV cancellations,
unitarity, and non-singularity in the degenerate mass limit.

6. Conclusions

We have presented a universal OS renormalization scheme for fermions
which relies on the OS no-mixing condition for incoming particles, non-
diagonal mass counterterms, and mass structures. The scheme naturally
gives gauge-independent mass counterterms, UV finite and gauge-dependent
field counterterms, and no counterterms for mixing matrices. In addition,
the scheme includes absorptive parts as much as possible, although, these
parts still cause some problems: gauge-dependence is not fully cancelled in
the Wud amplitude, there are singularities in the Hermitian part of field
renormalization (but not in the anti-Hermitian part or mass counterterms)
when the degenerate mass limit is taken. Fortunately, the main takeaway
of the scheme is the set of used counterterms, which means that the coun-
terterms are easily adaptable to MS schemes, schemes where the absorptive
parts are dropped, or schemes where two sets of field renormalization con-
stants are used. Moreover, we have argued that using non-diagonal mass
counterterms instead of mixing matrix counterterms is more consistent and
should be the preferred way.

We hope to publish a more detailed discussion including analytical ex-
amples of the proposed scheme in the Grimus–Neufeld model [34] in a future
publication.

This work was in part funded by the Lithuanian Academy of Sciences
via the project DAFI 2021.
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