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We introduce a new method for calculating the mixing matrix for non-
singlet quark operators including total derivatives, based solely on their
renormalization structure in the chiral limit. As input, the method re-
quires the well-known forward anomalous dimensions, which determine the
evolution of parton distribution functions, and a calculation of the matrix
elements of operators without total derivatives. Assuming a large number
of quark flavors nf , we are able to calculate the mixing matrix to fifth order
in the strong coupling αs in the MS-scheme.
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1. Introduction

The physics of the strong interaction is accurately described by a gauge
theory based on SU(3), namely quantum chromodynamics (QCD). While
QCD has been very successful, some open questions remain. An important
example of such an as-of-yet unanswered question is the following: How do
hadronic properties emerge from the properties of the constituent partons?
For example, it is still not completely understood how the spin of the proton
arises from the angular momenta of the quarks and gluons inside the proton.
Hence, we need to look inside the proton, which of course we can do using
scattering experiments. The description of such experiments in QCD is
somewhat simplified due to factorization, which tells us that physical cross
sections can be written as a convolution of a hard-scale function and a soft-
scale one. The hard-scale function represents the short-distance part of the
process, which involves the partonic degrees of freedom inside the hadron.
Typically, it can be written as some partonic cross section, calculable per-
turbatively in the strong coupling αs. The soft-scale function represents
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the long-distance part of the process and is non-perturbative. This means
that it has to be fitted directly from experiment or calculated using non-
perturbative techniques, e.g. using lattice QCD. Important examples of such
non-perturbative functions are the parton distribution functions (PDFs) and
the generalized parton distributions (GPDs).

PDFs are accessible in forward-kinematic processes like inclusive deep-
inelastic scattering (DIS), ep → eX, and describe the distribution of the
longitudinal momentum and polarization of partons inside hadrons. From
the experimental side, they can be accessed by analyzing the data from the
HERA collider [1, 2] and the planned Electron–Ion Collider (EIC) [3, 4] in
the future. GPDs can be considered to be the counterparts of the standard
PDFs in processes with off-forward kinematics, like e.g. exclusive deeply-
virtual Compton scattering (DVCS, ep → epγ). They describe the trans-
verse distributions of the partons in the hadronic target. Combining this
with the longitudinal information then gives rise to a full three-dimensional
description of hadronic structure. Furthermore, GPDs also allow for the
determination of the partonic angular momentum contributions to the total
hadronic spin [5]. The study of GPDs is one of the main goals of the future
EIC [3, 4]. The properties of PDFs and GPDs can also be studied using
lattice QCD, see e.g. [6, 7] and for recent progress [8–13].

While the distribution functions themselves are non-perturbative, their
scale-dependence can be calculated perturbatively in the strong coupling αs.
The origin of this lies in the analysis of DIS and DVCS using the Wilsonian
operator product expansion (OPE) [14, 15], which gives a direct relation
between PDFs and GPDs and the matrix elements of composite local gauge-
invariant operators. The consequence of this is that the scale-dependence
of the parton distributions is directly related to the scale-dependence of the
operators, determined by their anomalous dimensions. Hence, it is important
to understand the renormalization properties of the relevant operators, both
in forward and off-forward kinematics. In this work, we focus on the leading-
twist flavor-non-singlet quark operators.

In forward kinematics, the anomalous dimensions of the twist-2 non-
singlet quark operators, written as functions of the Mellin moment N rep-
resenting their Lorentz spin, are known completely up to the three-loop
level [16–19]. In certain limits, partial information is also available at four
and five loops [20–24]. In off-forward kinematics, the evolution kernel for
the non-singlet operators is known completely up to three loops [25]. The
calculation exploited conformal symmetry [26] of the QCD Lagrangian near
the Wilson–Fisher fixed point. This technique was already introduced in the
nineties by Müller and Belitsky [27, 28] for the calculation of two-loop ra-
diative corrections. In addition to the usual variable N , the moment space
anomalous dimensions in off-forward kinematics also depend on the num-
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ber k of total derivatives acting on the operator. Besides the computations
using the conformal approach, there are also some fixed-moment calcula-
tions of the operator matrix elements (OMEs) up to the three-loop level.
These calculations were done in the modified minimal subtraction (MS)
scheme as well as in alternative ones, like the regularization invariant (RI)
scheme [29, 30]. An advantage of such schemes is that they are suitable for a
direct application to the available lattice QCD results. These fixed-moment
calculations use a different basis for total derivative operators from the one
in the conformal approach, making a direct comparison between the fixed-
moment results of [29, 30] and [25, 27, 28] impossible. Instead, additional
computational steps are required.

In the present article, we will review the renormalization of flavor-non-
singlet quark operators including total derivatives, paying particular atten-
tion to possible choices for their bases. This way, we can connect different
results which, as of yet, appeared unrelated in the literature. Assuming a
large number of quark flavors nf , we calculate the relevant OMEs up to four-
loop order for a non-zero momentum transfer through the operator vertex.
Furthermore, we derive consistency relations for the corresponding operator
anomalous dimensions, which allow us to check and extend previous calcu-
lations for the leading-nf terms of the off-forward anomalous dimensions up
to five loops.

These proceedings are organized as follows. Next, we define the operators
and their matrix elements and study their renormalization. In Section 3, we
then discuss two bases for total derivative operators used in the literature and
summarize the knowledge of the mixing matrices in these bases. The next
section introduces a consistency relation which the anomalous dimensions
have to obey, leading to a novel algorithm for deriving the full mixing matrix.
Results of the application of this algorithm are discussed in Section 5, and
we finish with some concluding remarks in Section 6.

2. Operator renormalization

2.1. Operators and their matrix elements

The operators appearing in the OPE analysis of DIS and DVCS are the
spin-N local non-singlet quark operators

ONS
µ1...µN

= S ψ̄λαγµ1Dµ2 . . . DµNψ , (1)

with ψ the quark field, Dµ = ∂µ−igsAµ the standard QCD covariant deriva-
tive, and λα the generators of the flavor group SU(nf). As we are interested
in the leading-twist contributions, we symmetrize the Lorentz indices and
take the traceless part, indicated by S. This projects the twist-two contri-
bution, see e.g. [31]. The scale-dependence of these operators is determined
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by their anomalous dimensions, which can be calculated perturbatively in
the strong coupling. Schematically,

dO
d lnµ2

= −γO , γ ≡ asγ(0) + a2sγ
(1) + . . . (2)

with µ the renormalization scale and as = αs/(4π). We gain access to the
anomalous dimensions by considering spin-averaged matrix elements of the
operators 〈

ψ(p1)
∣∣ONS

µ1...µN
(p3)

∣∣ ψ̄(p2)
〉
, (3)

with quarks and anti-quarks of momenta p1 and p2 as external fields, see
Fig. 1. We assume all momenta to be incoming,

∑3
i=1 pi = 0. The trace-

lessness and symmetry of the Lorentz indices is most easily achieved by
contracting the OMEs with a tensor of light-like ∆,

∆µ1 . . . ∆µN , (4)

and ∆2 = 0. As we are interested in the renormalization of the non-singlet
operators including total derivatives, we have to choose p3 6= 0. However, for
simplicity but without loss of generality, one can nullify one of the external
momenta, i.e. we can set p2 = 0. The calculated OMEs are then of the form

∆µ1 . . . ∆µN
〈
ψ(p1)

∣∣ONS
µ1...µN

(−p1)
∣∣ ψ̄(0)

〉
≡
〈
ψ(p1) |ON (−p1)| ψ̄(0)

〉
. (5)

Note that this reduces the initial three-point function to a two-point one.
The computation of these OMEs is done entirely automatically using the
FORM [32, 33] program FORCER [34], resulting in fixed moments of the
OMEs in Eq. (5).

⊗

p1 p2

p3

Fig. 1. Green’s function 〈ψ(p1)|ONS
µ1...µN

(p3)|ψ̄(p2)〉 with momentum p3 = −p1− p2
flowing through the operator vertex. For simplicity, we set p2 ≡ 0.
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2.2. Operator renormalization and anomalous dimensions

The actual renormalization will be done using the MS-scheme [35, 36],
in which the evolution of the strong coupling is governed by

d as
d lnµ2

= β(as) = −as
(
ε+ β0as + β1a

2
s + β2a

3
s + . . .

)
. (6)

Here, β(as) is the standard QCD beta-function with β0 = (11/3)CA −
(2/3)nf . CA is the quadratic Casimir of the adjoint representation of the
color group SU(nc), CA = nc.

In forward kinematics, the operators renormalize multiplicatively as

ON+1 = ZN,N [ON+1] . (7)

The corresponding anomalous dimensions are related to the QCD splitting
functions by a Mellin transform

γNS(N) ≡ γN−1,N−1 = −
1∫

0

dx xN−1PNS(x) (8)

which determine, through a convolution ⊗ defined as

[PNS ⊗ fNS] (x) =

1∫
x

dy

y
PNS(y)fNS

(
x

y

)
, (9)

the scale-dependence of the standard PDFs

dfNS

(
x, µ2

)
d lnµ2

= [PNS ⊗ fNS] (x) . (10)

This is the well-known DGLAP evolution equation [37–39]. For off-forward
kinematics, the operator renormalization becomes more complicated due
to the mixing with total derivative operators. This means that now the
renormalization takes the form of a matrix equation

ON+1

∂ON
...

∂NO1

 =


ZN,N ZN,N−1 . . . ZN,0

0 ZN−1,N−1 . . . ZN−1,0
...

... . . .
...

0 0 . . . Z0,0




[ON+1]
[∂ON ]

...[
∂NO1

]
 . (11)

The off-forward anomalous dimensions, which determine the GPD scale-
dependence [5], are related to the Z-factors by

γDN,k = −
(

d

d lnµ2
ZN,j

)
Z −1j,k (12)
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and can be expanded in a power series in the strong coupling

γDN,k = asγ
D,(0)
N,k + a2sγ

D,(1)
N,k + a3sγ

D,(2)
N,k + a4sγ

D,(3)
N,k + a5sγ

D,(4)
N,k + . . . (13)

3. Two possible bases for total derivative operators

To study the renormalization of the quark operators in off-forward kine-
matics, we now have to choose a basis for the total derivative operators. In
this section, we discuss two possibilities which have appeared in the litera-
ture.

3.1. The Gegenbauer basis

One approach is to expand the local operators in terms of the Gegenbauer
polynomials [25]

OGN,k = (∆ · ∂)kψ̄(x) /∆C
3/2
N

(←
D ·∆−∆·

→
D

←
∂ ·∆+∆·

→
∂

)
ψ(x) , (14)

where [40]

CνN (z) =
Γ (ν + 1/2)

Γ (2ν)

N∑
l=0

(−1)l
(
N

l

)
(N + l + 2)!

(l + 1)!

(
1

2
− z

2

)l
. (15)

Here, k ≥ N is the total number of derivatives and we use the superscript G
to denote the operators in the Gegenbauer basis. Using properties of the
Gamma function, we can rewrite the operators as a particular double sum
of left- and right-derivative operators

OGN,k =
1

2N !

N∑
l=0

(−1)l
(
N

l

)
(N + l + 2)!

(l + 1)!

×
k−l∑
j=0

(
k − l
j

)
ψ̄(x) /∆

(←
D ·∆

)k−l−j (
∆·
→
D
)l+j

ψ(x) . (16)

The Gegenbauer basis is a natural choice when there is conformal symmetry,
e.g. near the Wilson–Fisher critical point of QCD, where βQCD = 0 [25,
28, 41]. The anomalous dimension matrix in this basis is triangular, i.e.
its elements γGN,j = 0 if j > N , and its diagonal elements correspond to
the standard forward anomalous dimensions γN,N [23], cf. Eq. (7). Note
that we can drop the superscript G for γN,N as they do not depend on the
basis choice for operators with additional total derivatives. Currently, the
Gegenbauer mixing matrix is known completely to three loops [25].
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3.2. The total derivative basis

Another approach is to identify the operators by counting powers of
derivatives

ODp,q,r = (∆ · ∂)p
{

(∆ ·D)qψ̄ /∆(∆ ·D)rψ
}
, (17)

see e.g. [42, 43] and [31, 44]. The superscript D indicates that the operators
are written in the total derivative basis. If we now impose the chiral limit,
i.e. work with massless quarks, the partial derivatives act as

ODp,q,r = ODp−1,q+1,r +ODp−1,q,r+1 . (18)

Another consequence of the chiral limit is that left- and right-derivative
operators renormalize with the same renormalization constants

ODp,0,r =
r∑
j=0

Zr,r−j
[
ODp+j,0,r−j

]
, (19)

ODp,q,0 =

q∑
j=0

Zq,q−j
[
ODp+j,q−j,0

]
, (20)

and hence have the same anomalous dimensions.
The total derivative basis is useful for connecting continuum quantities

to lattice ones in non-perturbative studies, see e.g. [6, 29]. The mixing
matrix is also triangular in this basis (γDN,k = 0 if k > N) and, as was the
case for the Gegenbauer basis, the diagonal elements are just the forward
anomalous dimensions γN,N [23]. We can again drop the superscript D due
to basis independence. In this basis, the anomalous dimensions for low-N
operators are known up to the three-loop level; see [29] for analytical results
and [30] for a numerical extension of these. It is also possible to transform
the anomalous dimensions in the D/G basis to those in the G/D one using

N∑
j=0

(−1)j
(j + 2)!

j!
γGN,j =

1

N !

N∑
j=0

(−1)j
(
N

j

)
(N + j + 2)!

(j + 1)!

j∑
l=0

γDj,l . (21)

Note that this is not a 1-to-1 relation between the anomalous dimensions in
both bases; the best we can do is relate specific sums to each other.

4. Constraints on the anomalous dimensions
in the total derivative basis

Focusing now on the total derivative basis, it turns out that the elements
of the mixing matrices are not all independent. Instead, they are subject
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to particular constraints, which define useful relations between them in the
chiral limit. Starting from Eq. (18), we can derive the following relation
between the bare operators by acting N times with a partial derivative on
ODN,0,0:

OD0,N,0 − (−1)N
N∑
j=0

(−1)j
(
N

j

)
ODj,0,N−j = 0 . (22)

Now using the renormalization equations (19), (20) and performing some
simple algebra, we find a relation between the renormalization factors, and
hence between the anomalous dimensions

γDN,k =

(
N

k

)N−k∑
j=0

(−1)j
(
N − k
j

)
γj+k,j+k

+
N∑
j=k

(−1)k
(
j

k

) N∑
l=j+1

(−1)l
(
N

l

)
γDl,j . (23)

As the relation holds a priori at the level of the renormalization constants,
the corresponding relation between the anomalous dimensions is valid to all
orders in as.

Putting now k = 0 in Eq. (23) yields

γDN,0 = (−)N

 N∑
i=0

γDN,i −
N−1∑
j=1

(−)j
(
N

j

)
γDj,0

 . (24)

This relation allows us to recursively build up the last column of the mixing
matrix, provided we can determine the first sum between brackets. We
now briefly explain that this is in fact possible. From the renormalization
structure of the operators, Eq. (19), it is clear that the bare matrix element
of ON+1 is related to the sum of renormalization factors

∑N
i=0 ZN,i, and

hence its 1/ε-pole will be related to
∑N

i=0 γN,i. Collecting this information
in the quantity B(N + 1), we can then write

B(N + 1) =

N∑
j=0

γDN,j . (25)

Substituting into Eq. (24) leads to

γDN,0 =

N∑
i=0

(−1)i
(
N

i

)
B(i+ 1) . (26)
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This implies that the last column of the mixing matrix can be directly re-
lated to a fixed-moment Feynman diagram calculation of matrix elements of
operators without total derivatives.

Going back to the general-k relation, Eq. (23), we emphasize that the
only assumption made in its derivation was the use of the chiral limit,
which imposes constraints on the renormalization structure of the opera-
tors. Hence, it can be used as an order-independent consistency check,
which any expression for γDN,k has to obey. Alternatively, Eq. (23) allows for
the construction of the full mixing matrix starting from the forward anoma-
lous dimensions γN,N and the last column γDN,0 at any order of perturbation
theory.

Thus, with partial information being available even to five-loop order,
one can produce an ansatz for the off-diagonal elements of the mixing matrix
and use Eq. (23) to test its self-consistency. The last column will then serve
as a boundary condition. This leads to a 4-step algorithm for constructing
the mixing matrix:

1. Starting from the bare OMEs in Eq. (5), one determines the all-N
expression for the last column entries γDN,0 of the mixing matrix, cf.
Eq. (26).

2. Next, one calculates a sum of the forward anomalous dimensions(
N

k

) N−k∑
j=0

(−1)j
(
N − k
j

)
γj+k,j+k . (27)

The structure of the result can then be used to construct an ansatz for
the off-diagonal elements.

3. Using the chosen ansatz, one calculates the double sum
N∑
j=k

(−1)k
(
j

k

) N∑
l=j+1

(−1)l
(
N

l

)
γDl,j (28)

and collects everything into Eq. (23). This results in a system of
equations in the unknown coefficients of the ansatz, subject to the
boundary condition that the expression for γDN,k has to agree with the
previously found expression for γDN,0 from step 1.

4. If one finds a unique solution for the system of equations, one has suc-
cessfully determined the final expression for the off-diagonal elements
of the mixing matrix. If such a solution is not found, some terms will
remain in Eq. (23). The structure of these remnant terms can be used
to adapt the ansatz, leading one back to step 3.
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During the course of this algorithm, some non-trivial sums appear, cf.
Eq. (27) and Eq. (28). These can be evaluated using algorithms of sym-
bolic summation, which are nicely implemented in the Mathematica package
Sigma by Schneider [45].

5. Results

Using the consistency relation and the algorithm introduced in the pre-
vious section, we have calculated the off-diagonal elements of the anomalous
dimension matrix up to five-loop order in the leading-nf approximation. As
illustration, we quote the five-loop result

γ
D,(4)
N,k =

16

81
n4fCF

{
1

12
(S1(N)− S1(k))4

(
1

N + 2
− 1

N − k

)
+

1

3
(S1(N)− S1(k))3

(
5

3

1

N − k +
2

N + 1
− 11

3

1

N + 2
+

1

(N + 2)2

)
+

1

2
(S1(N)− S1(k))2 (S2(N)− S2(k))

(
1

N + 2
− 1

N − k

)
+ (S1(N)− S1(k))2

(
1

3

1

N − k −
13

3

1

N + 1
+

2

(N + 1)2
+

4

N + 2

−11

3

1

(N + 2)2
+

1

(N + 2)3

)
+ (S1(N)− S1(k)) (S2(N)− S2(k))

×
(

5

3

1

N − k +
2

N + 1
− 11

3

1

N + 2
+

1

(N + 2)2

)
+

2

3
(S1(N)− S1(k)) (S3(N)− S3(k))

(
1

N+2
− 1

N−k

)
+ (S1(N)− S1(k))

×
(

2

3

1

N − k +
2

N + 1
− 26

3

1

(N + 1)2
+

4

(N + 1)3
− 8

3

1

N + 2

+
8

(N + 2)2
− 22

3

1

(N + 2)3
+

2

(N + 2)4

)
+

1

4
(S2(N)− S2(k))2

(
1

N + 2
− 1

N − k

)
+ (S2(N)− S2(k))

(
1

3

1

N − k −
13

3

1

N + 1
+

2

(N + 1)2
+

4

N + 2

−11

3

1

(N + 2)2
+

1

(N + 2)3

)
+

2

3
(S3(N)− S3(k))

(
5

3

1

N − k +
2

N + 1
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−11

3

1

N + 2
+

1

(N + 2)2

)
+

1

2
(S4(N)− S4(k))

(
1

N + 2
− 1

N − k

)
+

2

3

1

N − k −
2

3

1

N + 1
+

2

(N + 1)2
− 26

3

1

(N + 1)3
+

4

(N + 1)4

−8

3

1

(N + 2)2
+

8

(N + 2)3
− 22

3

1

(N + 2)4
+

2

(N + 2)5

}
. (29)

Here, CF = (n2c − 1)/(2nc). For more details and for the lower-loop expres-
sions we refer the reader to our main paper [46].

Furthermore, by transforming our results to the Gegenbauer basis using
Eq. (21), we have an independent check of the results in [25]. Finally, our
algorithm can also be used to extend the results in the Gegenbauer basis
to the four-loop level, in the leading-nf approximation, the expression for
which can be found in [46].

6. Conclusion and outlook

We have studied the renormalization of non-singlet quark operators in-
cluding total derivative operators, which appear in the OPE analysis of DIS
and DVCS. In doing so, we have derived a novel method for calculating
the off-diagonal elements of the anomalous dimension matrix, based on the
renormalization structure of the operators in the chiral limit. On the one
hand, this provides an independent check of previous calculations in differ-
ent operator bases. On the other hand, we also derive new results, e.g. the
five-loop anomalous dimensions in the leading-nf limit. In our main pa-
per [46], we also show that the method can be used beyond the leading-nf
limit. Results here include the anomalous dimensions of low-N operators
to five loops in full QCD. By performing a scheme transformation to the
RI-scheme, these will also become useful in studies of the hadron structure
using lattice QCD.

The presented algorithms, i.e. consistency relations in combination with
a direct Feynman diagram computation of the relevant OMEs, allow for an
automation of the calculations using various computer algebra programs,
such as Forcer for the calculation of massless two-point functions up to four
loops and symbolic summation using Sigma.

Finally, it should be straightforward to adapt the method to the calcu-
lation of mixing matrices for different operators in QCD and to different
models altogether. These aspects are left for future studies.
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