
Acta Physica Polonica B Proceedings Supplement 15, 2-A7 (2022)

DETERMINATION OF THE STRONG COUPLING
BEYOND NNLO USING EVENT SHAPE AVERAGES∗

Adam Kardos

Department of Experimental Physics, Institute of Physics
Faculty of Science and Technology

University of Debrecen 4010 Debrecen, P.O. Box 105, Hungary

Gábor Somogyi

Wigner Research Centre for Physics
Konkoly-Thege Miklós u. 29-33, 1121 Budapest, Hungary

Andrii Verbytskyi

Max-Planck-Institut für Physik, 80805 Munich, Germany

Received 30 December 2021, accepted 31 December 2021,
published online 28 February 2022

We present a method of extracting the strong coupling at N3LO preci-
sion in QCD using a combination of O(α3

S) perturbative calculations with
estimations of the O(α4

S) corrections from data. We apply the procedure
to a set of event shape averages measured at the LEP, PETRA, PEP, and
TRISTAN colliders. We account for non-perturbative effects using both
modern Monte Carlo event generators as well as analytic models. Our
results show that the precision of αS extraction cannot be significantly
improved solely with higher-order perturbative QCD predictions, but re-
quires also a significant refinement of the understanding and modeling of
the hadronization process.
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1. Introduction

The study of fully hadronic final states in electron–positron annihilation
presents one of the cleanest approaches to measuring the strong coupling,
αS(MZ). Such measurements have a rich history and in the past numerous
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extractions of the strong coupling have been performed by comparing exper-
imental data on event shapes and jet rates to perturbative QCD predictions.
Nowadays, progress in these measurements is driven solely by improvements
in the theoretical description, given the current lack of active high-energy
e+e− experiments. Nevertheless, some recent determinations have reached
a relative precision of ∼ 1% on αS(MZ) [1–3]. Having said that, examining
the full set of e+e− determinations that enter the current world average [4],
it is evident that there is a sizable spread between individual measurements.

In order to unravel the possible sources of these discrepancies, it is useful
to catalogue the main differences between the determinations. To under-
stand what is perhaps the most fundamental difference, recall that although
experiments detect hadrons, perturbative QCD computations are performed
with partons as basic degrees of freedom. Thus, in any comparison of ex-
perimental data to theoretical predictions, the parton-to-hadron transition
must be modeled in one way or another, and theory calculations must be
corrected for the effects of hadronization. There are fundamentally two dif-
ferent approaches to obtain these corrections: they may be computed using
analytic models or extracted from simulations using Monte Carlo event gen-
erators. The first basic difference between various strong coupling measure-
ments relates to the choice of hadronization modeling. Second, the amount
of perturbative information included in the used theoretical predictions is
also a source of difference. Currently, fully differential calculations are avail-
able for the e+e− → 3 jets process at O(α3

S) accuracy, corresponding to
the next-to-next-to-leading order (NNLO) of perturbation theory for three-
jet observables [5–10]. Hence, current determinations use at least NNLO
accurate theoretical predictions, however, for specific observables, notably
the two-jet rate R2, this order in αS actually corresponds to N3LO accu-
racy [3]. Moreover, further perturbative information is available in the form
of resummed predictions. However, the accuracy of resummation that can
be achieved varies from observable to observable, from as low as only next-
to-leading logarithmic (NLL) in the three-jet rate R3 [11] to NNLL in the
logarithm of the two-jet rate R2 [12], to N3LL for event shapes such as
thrust [1] and the C-parameter [13]. Finally, the choice of observable itself
can impact the results. For example, jet rates are known to be less sensitive
to hadronization corrections than event shapes, but as we have just seen,
the resummation for some event shapes can be carried to higher logarithmic
orders than for jet rates. Clearly, there is no unique “best” observable.

This state of affairs then raises some interesting questions. First, given
that new e+e− data are not foreseen in the near future, it is important to as-
sess which improvements of the theoretical description are most relevant for
further improvements of the measurements. In particular, would the avail-
ability of perturbative predictions at yet higher orders improve the precision
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of αS extraction without new data? If not, what are the limiting factors
for precision in future QCD studies and what should be done to eliminate
them? In order to address these questions, we perform a state-of-the-art
perturbative QCD analysis with estimations of unknown higher-order per-
turbative corrections from data. We also employ both modern Monte Carlo
tools as well as analytic models to determine hadronization corrections, the
latter being extended to O(α4

S) accuracy for the first time. This allows us to
study the impact of the choice of hadronization modeling in a broad sense.

In order to implement our analysis, it is obviously important to con-
sider observables where the number of unknown higher-order perturbative
coefficients that must be estimated from data is small. Hence, we turn to
event shape averages and, in particular, consider the averages of one minus
thrust and the C-parameter. Our choice of these particular event shapes
is motivated by the abundance of available measurements. We note that
while several measurements exist also for higher moments of event shapes,
unfortunately almost all analyses fail to give information on the correlations
between the various moments. However, these correlations are known to be
strong [14] and thus a simultaneous fit of all of the available data would
require taking them into account. Hence, we limit the analysis to only the
first moments, i.e., averages of event shapes.

2. Theoretical predictions

The nth moment of an event shape variable O is defined by

〈On〉 =
1

σtot

Omax∫
Omin

On
dσ(O)

dO
dO , (1)

where σtot denotes the total hadronic cross section in electron–positron an-
nihilation, while [Omin, Omax] is the kinematically allowed range of the ob-
servable O. On the other hand, the fixed-order perturbative predictions for
〈On〉 are usually presented normalized to the leading order hadronic cross
section. At some reference renormalization scale µ = µ0, we have

1

σ0

Omax∫
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dσ(O)

dO
dO =

αS(µ0)

2π
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D
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The first three coefficients in this equation (i.e., A〈O
n〉

0 , B〈O
n〉

0 , and C〈O
n〉

0 )
have been known for some time [6, 8], however for this work, we have re-
computed them with high numerical precision using the CoLoRFulNNLO
method [10, 15, 16], see Table 1. Predictions for event shape averages nor-
malized to the total hadronic cross section at any scale can be computed
from Eq. (2) using the known expression for σtot and the renormalization
group equation for the strong coupling, see Ref. [17] for details.

Table 1. The LO, NLO, and NNLO coefficients for the averages of one minus thrust
and the C-parameter. For the details of the analytic calculation, see Ref. [17].

Coefficient This work Analytic Ref. [6] Ref. [8]

A
〈(1−T )1〉
0 2.1034(1) 2.10347 2.1035 2.10344(3)

B
〈(1−T )1〉
0 44.995(1) 44.999(2) 44.999(5)

C
〈(1−T )1〉
0 979.6(6) 867(21) 1100(30)

A
〈C1〉
0 8.6332(5) 8.63789 8.6379 8.6378(1)

B
〈C1〉
0 172.834(5) 172.859 172.778(7) 172.8(3)

C
〈C1〉
0 3525(3) 3212(89) 4200(100)

We take into account b-quark mass corrections at NLO accuracy by sub-
tracting the fraction of b-quark events from the massless coefficients and
adding back the corresponding massive results obtained with the Zbb4 pro-
gram [18]

A〈O
n〉 = (1− rb(Q))A

〈On〉
mb=0 + rb(Q)A

〈On〉
mb 6=0 ,

B〈O
n〉 = (1− rb(Q))B

〈On〉
mb=0 + rb(Q)B

〈On〉
mb 6=0 . (3)

Above rb(Q) is the fraction of b-quark events which is given by

rb(Q) =
σmb 6=0

(
e+e− → bb̄

)
σmb 6=0(e+e− → hadrons)

. (4)

Finally, as discussed in Introduction, the O(α4
S) corrections, i.e., the

D
〈On〉
0 coefficients, are extracted from data together with αS(MZ). With re-

gard to this extraction, we emphasize that its main point is not to obtain an
accurate determination of these quantities. Rather, it is to model them as
best as possible in the absence of an actual computation, so that we can as-
sess the impact of including terms beyond NNLO accuracy in determinations
of the strong coupling.
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3. Hadronization corrections

The modeling of non-perturbative corrections is essential in order to
perform a meaningful comparison of theoretical predictions with data. In
this analysis, we pursue two approaches to describing hadronization.

First, hadronization corrections can be extracted from Monte Carlo event
generators. Thus, we generate samples of e+e− → Z/γ → 2, 3, 4, 5 par-
ton processes using MadGraph5 [19] and the OpenLoops [20] one-loop li-
brary. The two-parton final process is computed at NLO accuracy. The
events are then showered and hadronized using different parton showers and
hadronization models. In our default setup, labeled HL, we use Herwig7.2.0
[21] and employ the Lund fragmentation model [22] to describe the parton-
to-hadron transition. To study the systematics associated with the choice of
hadronization model, we also generate predictions with Herwig7.2.0 and the
cluster hadronization model [23] (HC setup). Finally, for cross-checks, we
consider results obtained using Sherpa2.2.8 [24] with the cluster hadroniza-
tion model [25] (SC setup). Then in each setup, we compute predictions
for event shape averages both at hadron (〈On〉MC hadrons) and parton lev-
els (〈On〉MC partons). In order to account for the presence of a shower cut-
off scale of Q0 ' O(1 GeV) in the Monte Carlo programs which effects
event shape distributions (see e.g., Refs. [26, 27]), we compute each predic-
tion for several different values of this cut-off and extrapolate the results to
Q0 → 0 GeV. Theory predictions are then corrected for hadronization by
the ratio of hadron-to-parton level Monte Carlo results

〈On〉corrected = 〈On〉theory ×
〈On〉MC hadrons, Q0=0 GeV

〈On〉MC partons, Q0=0 GeV
. (5)

Figure 1 shows the Monte Carlo predictions at both hadron and parton
level extrapolated to Q0 → 0 GeV as well as the perturbative result at
NNLO together with the measured data. The hadron and parton level Monte
Carlo predictions provide reasonable descriptions of the data and NNLO
results for a wide range of center-of-mass energies. However, the parton
level Monte Carlo results are not reliable for the lowest values of

√
s, since

in QCD the event shape moments 〈On〉 should decrease with energy. Thus,
measurements with

√
s < 29 GeV are excluded from the analysis.

Second, non-perturbative corrections can also be computed using ana-
lytic models. In the dispersive model of hadronization corrections considered
here, the perturbative event shape averages are simply shifted〈

O1
〉
hadrons

=
〈
O1
〉
hadrons

+ aOP . (6)

Here, aO is an observable-specific constant with a1−T = 2 and aC = 3π,
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Fig. 1. Data and predictions of the Monte Carlo event generators extrapolated to
Q0 → 0 GeV. The NNLO result was computed using αS(MZ) = 0.118.

while P is the power correction which is universal for all event shapes1. In
our analysis, we must compute P to O(α4

S) accuracy. The ingredients of
this computation are the known four-loop running of the strong coupling in
the MS scheme and the relation between the effective soft coupling in the
Catani–Marchesini–Webber (CMW) scheme αCMW

S and the strong coupling
in the MS scheme αS. This relation has the general form of

αCMW
S = αS

[
1 +

αS

2π
K +

(αS

2π

)2
L+

(αS

2π

)2
M +O

(
α4
S

)]
, (7)

where K is simply the one-loop cusp anomalous dimension, while L and M
can be computed once the effective soft coupling is explicitly defined be-
yond NLL accuracy. As there are several proposals in the literature for this
definition [28, 29], the L and M coefficients carry an associated scheme de-
pendence. We denote by A0 and AT the schemes based on the definitions
A0,i and AT,i of Ref. [29]2. We also define the Acusp scheme for easier com-
parison to previous work [30]. This scheme corresponds to simply setting L
and M equal to the two- and three-loop cusp anomalous dimensions. The
power correction P at N3LO accuracy takes the form of

1 See Ref. [17] for some comments on possible limitations of this model.
2 The definition of the soft coupling in Ref. [28] is equivalent to AT,i of Ref. [29].



Determination of the Strong Coupling Beyond NNLO Using Event . . . 2-A7.7

P (αS, Q, α0) =
4CF
π2
MµI

Q

{
α0(µI)−

[
αS(µR) +

(
K + β0

(
1 + ln

µR
µI

))
×
α2
S(µR)

2π
+

(
2L+ (4β0 (β0+K) + β1)

(
1 + ln

µR
µI

)
+ 2β20 ln2 µR

µI

)
α3
S(µR)

8π2

+

(
4M+

(
2β0 (12β0 (β0+K) + 5β1) + β2 + 4β1K + 12β0L

)(
1 + ln

µR
µI

)
+β0

(
12β0 (β0 +K) + 5β1

)
ln2 µR

µI
+ 4β30 ln3 µR

µI

)
α4
S(µR)

32π3

]}
, (8)

where M is the so-called Milan factor and µI is the scale at which the
perturbative and non-perturbative couplings are matched3. Following the
traditional choice, we set µI = 2 GeV. Finally, α0(µI) denotes the first
moment of the effective soft coupling below the scale µI

α0(µI) =
1

µI

µI∫
0

dµαCMW
S (µ) (9)

and is a non-perturbative (and scheme-dependent) parameter of the model.
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Fig. 2. Multiplicative hadronization corrections extracted from Monte Carlo event
generators and the analytic hadronization model in the A0 scheme. The hadroniza-
tion corrections in the AT and Acusp schemes are numerically very similar to the
A0 scheme and are not shown.

3 The subscripts on the scales µR and µI stand for “renormalization” and “infrared”,
respectively.
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Figure 2 shows the ratios of hadron-to-parton level predictions for the
various hadronization models we consider. Note that hadronization correc-
tions from the AT and Acusp scheme are numerically very close to those of
the A0 scheme and are thus not shown separately.

4. Data sets and fit procedure

For the analysis, we considered measurements from the ALEPH, AMY,
DELPHI, HRS, JADE, L3, MARK, MARKII, OPAL, and TASSO experi-
ments. Our combined analysis includes over 20 data sets spanning a wide
range of center-of-mass energies between 29 GeV and 206 GeV, see Ref. [17]
for details. Our selection of the variables 〈(1 − T )1〉 and 〈C1〉 (i.e., aver-
ages of one minus thrust and the C-parameter) was explained at the end of
Introduction.

In order to determine the optimal values of αS(MZ), we used the MI-
NUIT2 program to minimize the function

χ2(αS) =

all data sets∑
i

χ2
i (αS) , (10)

where for each data set i, we have χ2
i (αS) = ( ~D− ~P (αS))V −1( ~D− ~P (αS))T .

Here, ~D and ~P (αS) denote the vectors of data points and calculated pre-
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Fig. 3. Data and fits to the data using perturbative predictions at N3LO accuracy
and different hadronization models.
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dictions, while V stands for the covariance matrix of ~D. In this analysis,
V was diagonal with the values of the diagonal elements obtained by adding
statistical and systematic uncertainties in quadrature for each measurement.

In addition to αS(MZ), we fit also the O(α4
S) perturbative coefficients

D〈O
n〉 in N3LO fits, as well as the value of α0(2 GeV) when using the analytic

hadronization model. Moreover, the Milan factor is also included in the fit
as a constrained parameter, which provides a way to take into account its
theoretical uncertainty. The multiple numerical results of the NNLO and
N3LO fits are presented in Ref. [17], while Fig. 3 shows the predictions for
the N3LO fits for individual data points. Note that the dependence on the
analytic hadronization scheme is mild and hence only the results for the A0

scheme are shown.

5. Results

The values obtained for αS(MZ) in the various fits are presented in Fig. 4.
Examining the figure, we observe good agreement between fits to 〈(1−T )1〉
and 〈C1〉 data both at NNLO and N3LO accuracy. This can be viewed as
a check of the internal consistency of the extraction procedure. We also
observe that the dependence of the fitted value of αS(MZ) on the analytic
hadronization scheme is mild. However, similarly to previous studies [30],
the discrepancy between the results obtained using Monte Carlo hadroniza-
tion models and analytic hadronization models is found to be sizable both
in the NNLO and the N3LO fits. This suggests that the discrepancy has
a fundamental origin and would continue to hold even using exact N3LO
predictions. Consequently a better understanding of hadronization is of ba-
sic importance to increasing the precision of αS(MZ) extractions in future
studies.
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NNLO A0

NNLO HL
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Fig. 4. Fitted values of αS(MZ) at NNLO and N3LO using different hadronization
models.
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Turning to the fits of the O(α4
S) perturbative coefficients D〈(1−T )1〉 and

D〈C
1〉, Fig. 5 shows that their extracted values are in reasonable agreement

between fits using Monte Carlo and analytic hadronization models for both
observables. This demonstrates the viability of extracting higher-order co-
efficients, once a large amount of precise and consistent data is available.
Accurate high-energy measurements would be especially valuable for such
an extraction.
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D〈C1〉/105

〈C1〉

Fig. 5. Fitted values of the O(α4
S) perturbative coefficients D〈(1−T )1〉 (left) and

D〈C
1〉 (right) using different hadronization models.

Last, we examine the results of the fits for the non-perturbative param-
eter α0(2 GeV), presented in Fig. 6. Recall that this parameter is scheme-
dependent, so the fitted values in the different schemes should not be directly
compared to each other. Nevertheless, we see that the choice of scheme has
only a small numerical impact on the extracted value of α0(2 GeV). More-
over, the results obtained from fits to 〈(1 − T )1〉 and 〈C1〉 data agree well
with each other both at NNLO and N3LO accuracy. The rather large un-
certainties observed in the N3LO fits are due primarily to the insufficient
amount of data, the quality of the available data and the extraction method
itself.
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Fig. 6. Fitted values of the non-perturbative parameter α0(2 GeV) at NNLO and
N3LO using different hadronization models.
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6. Conclusions

The aim of the present analysis was to assess the factors that will de-
termine the precision of QCD analyses of e+e− data once theoretical pre-
dictions at O(α4

S) accuracy become available. To this end, we have per-
formed an extraction of αS(MZ) from the averages of the event shapes
〈(1 − T )1〉 and 〈C1〉 at different perturbative orders and employed dif-
ferent types of hadronization models. Using perturbative predictions at
NNLO accuracy and analytic hadronization models, we have obtained val-
ues of the strong coupling that are consistent with the latest world average
αS(MZ)PDG2020 = 0.1179± 0.0010.

In order to determine the impact of the presently unknown O(α4
S) correc-

tions on the measurement of the strong coupling, we estimated the missing
perturbative coefficients from data. The values of αS(MZ) obtained in this
way are compatible with the current world average, within somewhat large
uncertainties, e.g.,

αS(MZ)N
3LO+A0

= 0.12911± 0.00177 (exp.)± 0.0123 (scale) (11)

from the 〈(1−T )1〉 data. The obtained precision can be increased with more
high-quality data from future experiments.

Finally, the comparison of results obtained with Monte Carlo and ana-
lytic hadronization models exhibits what appears to be a fundamental dis-
crepancy which would likely continue to hold even if the exact O(α4

S) correc-
tions were known. This suggests that future extractions of the strong cou-
pling will be strongly affected by the modeling of hadronization corrections
even once exact higher-order corrections are included in the analyses. Thus,
in addition to advancing the perturbative predictions, our understanding
and modeling of non-perturbative effects will need to be seriously refined in
order to achieve substantial improvements in future extractions of the strong
coupling. This would be aided greatly by dedicated low-energy (below the
Z-peak) measurements at future e+e− facilities.
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Innovation Fund in Hungary.
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