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Although supernova remnants remain the main suspects as sources of
galactic cosmic rays up to the knee, the supernova paradigm still has many
loose ends. The weakest point in this construction is the possibility that
individual supernova remnants can accelerate particles to the rigidity of
the knee, 106 GV. This scenario heavily relies upon the possibility to excite
current-driven non-resonant hybrid modes, while the shock is still at the
beginning of the Sedov phase. These modes can enhance the rate of parti-
cle scattering thereby leading to potentially very-high maximum energies.
Here, we calculate the spectrum of particles released into the interstellar
medium from the remnants of different types of supernovae. We find that
only the remnants of very powerful, rare core-collapse supernova explo-
sions can accelerate light elements such as hydrogen and helium nuclei to
the knee rigidity, and that the local spectrum of cosmic rays directly con-
strains the rate of such events if they are also the source of PeV cosmic
rays. This would imply that the possibility to detect SNR pevatrons with
future gamma-ray observatories is drastically limited.
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1. Introduction

In the search for the origin of galactic cosmic rays (CRs), supernova
remnants (SNRs) have been extensively discussed as probable dominant
contributors. From the former works discussing this hypothesis [1–4] to
recent reviews [5–10], several arguments supporting, or challenging the SNR
paradigm have been discussed. One point of concern is the capability of
SNR shocks to accelerate particles (protons) up to the knee of the local
CR spectrum (∼ 3 × 1015 eV = 3 PeV). In order to efficiently accelerate
particles up to the PeV range, the magnetic field at SNR shocks must be
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substantially amplified with respect to the typical values found in the in-
terstellar medium (ISM). Such amplification of the magnetic field has been
observationally confirmed [11] and is theoretically expected. At young SNR
shocks, the dominant mechanism expected to be driving the amplification is
due to the non-resonant streaming of accelerated CRs escaping the shocks,
a mechanism often referred to as the Bell streaming instability [12, 13]. We
present the results of a calculation of the proton spectrum expected from
typical SNRs, after propagation in the Galaxy [14].

2. Protons from supernova remnants

We compute the total proton spectrum from typical supernova remnants
released in the ISM [15]. Propagation of CR protons in the Galaxy is ac-
counted for relying on a one-dimensional weighted slab model, where protons
from SNRs are injected in the thin Galactic disk and propagate in a cylindri-
cal halo [16, 17]. In the context of the non-resonant streaming instability, the
maximum energy of accelerated particles is found to be, for typical SNRs,
below the PeV range [18, 19]. In order to reach the PeV at SNRs from core-
collapse SNe, high mass-loss rates and total explosion energy and, loss ejecta
mass are required. A CR efficiency, ξCR, for particle acceleration of 5–10% is
required since Emax ∝ ξCR. Moreover, the normalization of the total number
of protons from SNRs released in the ISM Scales as Norm ∝ ξCRνSN, where
νSN is the rate of the SN considered. This means that, in order to reach
the PeV range with usual very energetic remnants from core-collapse SNe,
all parameters are fixed (including ξCR), and in order not to overproduce
the CR proton spectrum, the rate of these objects νSN must be reduced and
must be at most ∼ 5% of the total SN rate (typically ∼ 2–3/century), thus
of the order of 1 every 1000 years, with a typical duration of a few centuries.

3. Results

Our calculation, performed under reasonable assumptions for the prop-
agation of CRs in the Galaxy and in the current consensual framework of
particle acceleration at SNR shock, indicates that the number of SNR peva-
trons is expected to be limited, typically a few percent ∼ 1–5% of the typical
SN rate in the Galaxy, corresponding to unusual very energetic events. This
could explain the non-detection of an SNR pevatron with current and next
generation instruments, even in the SNR paradigm. We conclude by listing
several aspects that could potentially affect our result:

1. the size of the Galactic halo in which CRs propagate could be signifi-
cantly greater than the 4–5 kpc used in this work [20, 21];
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2. one or several of the parameters used to describe particle acceleration
(e.g., efficiency, slope [22]) and the SNR dynamics (e.g., mass-loss rate)
strongly depend on time;

3. another mechanism governing magnetic field amplification is at play;

4. the diffusion coefficient differs from the one inferred from recent mea-
surements [23].

Finally, other astrophysical sources, such as massive stars [24, 25], super-
bubbles [26, 27], and supernovae [28, 29] have recently regained interest. In
addition to specifying the role played by SNRs in the production of galac-
tic CRs, the contribution of these other sources should also be taken into
account in attempts to interpret the local CR spectrum.
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