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We find cylindrical steady-state jet configurations, which are shaped
and carry the traits of the acceleration and collimation processes occurring
in the launching region, as governed by the equations of ideal relativistic
magnetohydrodynamics (RMHD). The resulting solutions correspond to a
two-component structure having a fast propagating inner core surrounded
by a slower outer sheath. After we thoroughly present the algorithm to
find such steady-state solutions, we study their linear stability. For both
axisymmetric and non-axisymmetric modes, we find similar behaviour and
typical growth timescales for the instabilities of the order of a few tenths
of jet radius light-crossing time.
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1. Introduction

Astrophysical jets are unambiguously among the most stable objects
throughout the cosmos, reaching total lengths which are many times their
initial radii. It is also known that there are various kinds of instabilities that
are present in these configurations, which are not able to disrupt/destroy
the outflows, contrary to laboratory plasma experiments. As a result, there
are numerous studies on the stability of these objects trying to clarify this
controversy.

In order to study the problem stated above, we utilize a linear stability
analysis. This means that we perturb an initial equilibrium configuration
and focus on the early stages of the instabilities’ evolution. The choice of
the initial configuration plays a very important role, as it may filter some
kinds of instabilities and allow the development of others. We may have
configurations which do not include thermal pressure [1–4] or are purely
hydrodynamic [5–7]. In the most general case, we can have both a thermal
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and magnetic contribution to the jet dynamics [8, 9]. Apart from that, we
may focus on more special cases such as jets without current sheets on their
surface [10, 11].

This work will focus on a cold, cylindrical magnetised relativistic jet. We
present a general methodology to generate the unperturbed jet configuration
in Section 2, then we choose our physical requirements and produce the
model in Section 3, and finally in Section 4, we showcase and comment on
the linear stability analysis of the aforementioned outflow.

2. Derivation of unperturbed jet configuration

Our aim is to derive the behaviour of the physical quantities for outflows
which are assumed to be cylindrical and the dynamics dictated by the ideal
relativistic magnetohydrodynamics (RMHD) set of equations (see, for exam-
ple, [12]). The imposed symmetry on the system leads to the dependence of
the physical quantities solely on the radius, ∂ϕ = ∂z = 0, while the system
is also assumed to be stationary, ∂t = 0. The term ideal imposes that the
plasma resistivity is zero and, finally, the outflow is considered to be cold,
meaning that the thermal pressure of the jet is zero, p = 0, or equivalently,
the specific enthalpy equals one, ξ ≡ 1 + Γ

Γ−1
p
ρ = 1 (Γ is the polytropic

index). The magnetic and electric fields have absorbed
√
4π and we assume

that the speed of light and jet’s radius are equal to unity (c = ϖj = 1).
The main task is to derive profiles which are in accordance with the

acceleration and collimation processes taking place at the early stages of the
outflow, in the vicinity of the central engine. In order to do so, we need to
solve the radial component of the momentum equation (force balance)

B2
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ϖ
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γ2V 2
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d
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= 0 , (1)

where γ is the Lorentz factor, ρ0 the proper density, V the velocity, B and
E the magnetic and electric field, respectively. The magnetic field consists
of two components B = Bϕϕ̂ + Bz ẑ, the toroidal and z-component. The
electric field is derived by Ohm’s law, E = −V ×B. If we define the squared
co-moving magnetic field as F , we may formulate (1) as
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We also need Ferraro’s law

Ω =
Vϕ
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ϖ

Bϕ

Bz
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=⇒

χ = Vϕ − Vz
Bϕ

Bz
, (3)
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where Ω is the angular velocity of the field lines and χ = Ωϖ the radius
measured in the light cylinder length unit. This equation connects the phys-
ical quantities’ profiles with the rotation at the base [12, 13]. Among the
physical quantities, we will impose a desired behaviour only on the velocity
toroidal component

Vϕ =
λχ

1 + λχ2
, (4)

where λ is a constant regulating the maximum value of Vϕ|max =
√
λ/2. This

choice for Vϕ ensures that for distances near the axis χ ≪ 1, the profile is
linear with respect to the radius Vϕ ∼ χ and for distances χ ≫ 1/

√
λ drops

as the inverse of the radius Vϕ ∼ 1/χ. This is the only assumption for any
physical quantity that we need for the rest of the solution. Combining (3)
and the definition of the electric field, we get that E can be written as E =
−χBz. Thus, when we insert (4) into (3) and square the equation, we get(

Vz

Bz

)2 [
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z

(
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= (χ− Vϕ)
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, (5)

where we express the toroidal component of the magnetic field through F ,
B2

ϕ = F +B2
z (χ

2 − 1). If we replace V 2
z = 1− V 2

ϕ − 1
γ2 , then (5) becomes(
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)2 [
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= χ2
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. (6)

The unknown of (6) is χ, so obviously, the above equation is polynomial with
respect to the variable. In order to bring the equation to a comprehensive
form, we algebraically manipulate (6) into
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Clearly, this form of the equation is much easier to handle. One crucial
element is that there are only even powers of χ, meaning that we may reduce
the equation to a 3rd degree polynomial of χ2. This is really important as
any 3rd degree polynomial is always solvable, hence we are able to have a
proper solution in all cases. Furthermore, since this cubic equation has real
coefficients, there is always at least one real solution.
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3. Outflow modelling

Our aim is to produce new jet models as described in the previous section.
The only assumption made thus far is only for Vϕ (4) in order to formulate
the equation providing the radial profile of χ. Observing (7), there are also
other quantities and parameters we need to specify in order to be able to
fully solve the equation numerically.

Hence, we also need to define the behaviour for F, Bz, γ as functions
of radius and specify the value for the parameter λ. We try to find con-
figurations having a fast central component, engulfed by a slower one, with
different, in general, densities. In terms of asymptotic dependence on the
radius, we choose

F,Bz ∝
{

constant, ϖ ≪ ϖj

1/ϖ2, ϖ → ϖj
, γ ∝

{
constant, ϖ ≪ ϖj

constant, ϖ → ϖj
. (8)

The functions chosen that fulfil the above requirements are

F =
B2

0

1 + ∆y2
, Bz =

B0

1 + y2
, γ = γb +

γa − γb
1 +Ky2

, (9)

where B0, K, ∆, γa, and γb are constants. Particularly, γa and γb are the
values of the Lorentz factor on the axis and the boundary surface of the jet.
y is a normalised distance given by y = ϖ/ϖ0. The new unit length, ϖ0,
can be calculated by (7) for ϖ → 0 and is given by

ϖ0 =

√
(2−∆)(1− 1/γ2)

(λ− 1)2 − (1− 1/γ2)

1

Ω0
, (10)

where Ω0 is the value of Ω on the axis of the jet. Density distribution is given
by (2) solved with respect to ρ0. The toroidal component of the magnetic
field is provided by Bϕ = −

√
F +B2

z (χ
2 − 1). Finally, we are now able to

produce new unperturbed models for every choice of parameter values that
we want to study. We analyse one particular set including γa = 10, γb = 5,
Ω0 = 100, K = 10, B0 = 1, ∆ = 0.99, and λ = 10−4.

The above selection results to Vϕ|max = 0.01 so that rotation of the
plasma is not important, Vϕ ≪ Vz. The outlook of the model is summarised
in Fig. 1. The solution gives a constant profile for Ω near the axis and then
drops to much smaller values near the boundary of the outflow. As a result,
ρ0 is constant near the axis going to its maximum value at ϖ ∼ 0.1ϖj and
then drops up until jet’s radius attaining a value of ρ0|ϖj ∼ 10−4.
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Fig. 1. Plots of the unperturbed jet model generated for the parameters values
in Section 3. From left to right, for the top row, we have Lorentz factor, proper
density and Vϕ, while for the bottom row and in the same order, we have Bz, Bϕ,
and magnetisation (σ), respectively.

The magnetisation (σ) is defined as the electromagnetic energy density
flow over the kinetic energy density flow, or in the limit where Vϕ ≪ Vz ⇒
σ ≃ B2

ϕ/(γ
2ρ0ξ)

cold jet−−−−→ B2
ϕ/(γ

2ρ0). The jet is kinetically dominated up to
ϖ ≲ 0.1ϖj , while for larger distances until the jet’s boundary is increasing
reaching a maximum value of σ|max ≃ 12, corresponding to a magnetically
dominated part of the jet. This trend is heavily affected by the decrease in
the proper density in the outer region of the outflow.

4. Linear stability analysis

In order to conduct a linear stability analysis of a particular undisturbed
cylindrical outflow configuration, we need to insert small perturbations into
the RMHD system of equations, linearise, and solve the new system of equa-
tions. Thus, for every physical quantity, we perturb Q(ϖ,ϕ, z, t) = Q0(ϖ)+
δQ(ϖ,ϕ, z, t), where Q0, δQ are the unperturbed quantity and the perturba-
tion, respectively. Due to the fact that the configurations are independent
of z, ϕ, t, the perturbation can be expressed as δQ(ϖ,ϕ, z, t) = Q1(ϖ)
exp [i(kz +mϕ− ωt)], where m is integer.
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We employ the temporal approach, and thus we choose k real and com-
plex ω = Re(ω)+iIm(ω). The perturbation gets the form of δQ(ϖ,ϕ, z, t) =
Q1(ϖ) exp [Im(ω)t] exp [i(kz +mϕ− Re(ω)t)], which has a time-varying am-
plitude. For Im(ω) > 0, the solution is unstable, while for Im(ω) = 0 and
Im(ω) < 0, the modes are marginally stable and stable, respectively. Appar-
ently, we are solely interested in the unstable modes, so we focus on the posi-
tive value range for Im(ω). The higher the Im(ω) value, the smaller is the cor-
responding characteristic growth timescale of the instability, τ ∼ 1/Im(ω).

There are more steps in order to conduct successfully the linear anal-
ysis. These are setting up the environment of the jet, solving the sys-
tems of the jet and the environment, and applying the boundary condi-
tions which will provide the dispersion relation plots. A thorough detailed
overview of the methodology in the relativistic regime can be found in pub-
lications such as [10, 14].

In figure 2, we present the dispersion relation for the model of Section 3.
The density ratio η which is the density of the environment over the density
on the axis of the jet is set to η = 100. The general characteristics of the three
different dispersion plots are similar. We observe that the maximum values
for Im(ω) are obtained for k ≲ 10. This is achieved by numerous modes
being well localised around a specific k. These modes begin at k ∼ 0.1
and are present up to the cases that we examine k ≃ 10. The trend of
these localised solutions continues also for k > 10. The values of Im(ω)
through the various modes increase and reach an upper maximum which is
approximately Im(ω)|max ≃ 0.2 for all three plots.

As for the solutions which are present over a big range of k, for m = 0, the
values of Im(ω) (red/black thick coloured mode) is below 10−4, a fairly stable
mode compared to the others. For m = ±1, we observe two components,
one that peaks at small k and the other at high k. The trend is also the
same, so the high-k solutions are more unstable compared to their small
wavenumber counterparts, but more stable compared to the localised modes
for k ≃ 8–10.

Concluding, the prevailing type of instability (maximum Im(ω)) should
be the same for either m = 0,±1 since the k values for which they man-
ifest and the corresponding Im(ω) are similar. For these solutions, the
growth rates that we find are comparable to the ones found in the liter-
ature, Im(ω)|max ∼ 0.1. The modes spanning across the dispersion plot
range (m = ±1) are most probably of electromagnetic nature, as the value
of m affects both the shape and the values of Im(ω). The axisymmetric
case does not showcase a mode similar to the one mentioned above. The lo-
calised modes which behave similarly for every dispersion plot hint towards
a kinetic instability, most probably Kelvin–Helmholtz due to the difference in
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the velocity along the jet axis at the boundary of the outflow. Instabilities
based on the rotation of the jet are deemed improbable due to the really
small value of Vϕ.
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Fig. 2. (Colour on-line) Dispersion plots for the model of Section 3. Plots from top
to bottom are for m = 0, 1,−1, respectively. Solid lines represent the real part of ω,
while dashed lines are the imaginary counterpart. Different modes are represented
with different colours. We are interested in the modes having maximum Im(ω) at
every k of our range as they are the modes which will have the smallest growth
timescales and make their impact first on the jet configuration. The unit of ω is
the inverse of the jet radius light-crossing time and the unit of k is the inverse of
the jet radius.
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