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We present an analysis of elastic P -wave ππ phase shifts and inelastici-
ties up to 2 GeV in order to identify the corresponding JPC = 1−− excited
ρ resonances focusing on the ρ(1250) vs. ρ(1450) controversy. In our ap-
proach, we employed an improved parametrization in terms of a manifestly
unitary and analytic three-channel S-matrix with its complex-energy pole
positions. The included channels were ππ, ρ2π, and ρρ. The improvement
with respect to prior work amounts to the enforcement of maximum cross-
ing symmetry through once-subtracted dispersion relations called GKPY
equations. A clear picture emerges from this analysis, identifying five vec-
tor ρ states below 2 GeV which are ρ(770), ρ(1250), ρ(1450), ρ(1600), and
ρ(1800), with ρ(1250) being indisputably the most important excited ρ
resonance.
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1. Introduction

The experimental status of meson resonances with masses ranging from
1 to 2 GeV is very poor. Many states expected from the quark model have
not been observed so far, whereas several apparently normal resonances
listed in the PDG tables [1] do not fit in with mainstream quark models
like, for instance, the relativized meson model by Godfrey and Isgur (GI)
[2]. One of these disagreements is the first radial excitation of ρ(770), ρ′,
that is listed by the PDG as ρ(1450) [1], which is difficult to reconcile with
a lighter K⋆(1410), as the latter state contains one strange quark and one
light quark instead of two light quarks. However, one can find many indi-
cations of a lighter ρ′, roughly in the range of 1.25–1.3 GeV listed in the
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PDG under the ρ(1450) entry. In our work, we aimed at clarifying the sta-
tus of ρ′ and also the higher vector ρ excitations, by reanalyzing old data on
ππ scattering, viz. elastic phase shifts and inelasticities up to about 2 GeV.

2. Methodology

We used a manifestly unitary three-channel S-matrix parametrization,
in which the complex pole positions of the different ρ resonances are explic-
itly included through generalized BW-type expressions. The three included
channels were ππ, as well as the effective channels ρ2π and ρρ, with the
latter ones mimicking 4π final states.

Our approach included a careful analysis of the S-matrix poles of certain
resonances on different Riemann sheets of the complex energy plane. In order
to get model-independent results i.e. the positions of the complex poles, we
fitted the free parameters of the amplitude to the experimental data and to
dispersion relations called GKPY equations [3]. The amplitudes are fully
unitary and analytical, of the form of

Akl(s) =
1

2i

Skl − δkl

1− 4m2

s

, (2.1)

where s is the effective two-pion mass squared, δkl is the phase shift, m is
the pion mass and the Skl are S-matrix elements. For example, in the case
of the ππ channel, such an element reads

S11 = Sres
11 S

bgr
1 =

d∗res(−w∗)

dres(w)

dbgr(−k1)

dbgr(k1)
, (2.2)

and expressions for other matrix elements are given in Eq. (6) of Ref. [4].
The S-matrix factors Sres and Sbgr stand for resonant and background parts,
respectively, while dres and dbgr are the corresponding Jost functions, which
contain all the dynamics of the interacting particles, both in individual chan-
nels and between them. The momenta in a given channel are denoted by ki
and the uniformizing variable w is defined as

w =

√
s− s2 +

√
s− s3√

s3 − s2
, (2.3)

where s2 and s3 are the thresholds of the second and third channel, respec-
tively. The variable w transforms the eight-sheeted Riemann surface into a
simpler complex plane. A resonance pole is given by

√
sr = Er− iΓr/2, with

Er the resonance mass and Γr its full width. So for s = sr, we have

wr =

√
sr − s2 +

√
sr − s3√

s3 − s2
, (2.4)
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and the resonance contributions Sres are defined as

dres(w) = w
−M
2

M∏
r=1

(w + w∗
r ) , (2.5)

where M is the number of resonances. The background Jost function has
the form of

dbgr(k1) = exp

2ia− 2b

(
k1
m1

)3

Θ(s, s2)

 , (2.6)

with Θ(s, s2) the Heaviside function (= 1 for s > s2), and where a and b are
real numbers.

This simplest possible background in Eq. (2.6) was introduced and fitted
to the data as well as the GKPY equations in order to efficiently take into
account the influence of all higher ρ decay channels not included in the
dres(w) Jost function in Eq. (2.5). As a result, a constant and small phase
of almost −20◦ and a smoothly increasing small inelasticity are obtained.

In order to improve the near-threshold behavior of the amplitudes, we
replaced the original amplitude in Eqs. (2.1)–(2.6) by a polynomial below
about 640 MeV (this value resulted from fits to the data and the GKPY
equations). The polynomial is merely a generalized near-threshold expansion
in powers of the pion momentum k1,

ReA(s) =

√
s

4k
sin 2δ = mπk

2
[
a+ bk2 + ck4 + dk6 +O

(
k8
)]

, (2.7)

where δ denotes the phase shift and a, b are just scattering length and
effective range, respectively, which were fixed. However, the parameters c
and d were free in the fits to the data and to the GKPY equations. We used
these two parameters in order to match the phase shifts from the polynomial
(i.e., their values and first derivatives) to the multichannel ones determined
by Eqs. (2.1)–(2.6) at the matching energy of about 640 MeV.

3. Results

The results presented in Figs. 1–4 are based on the fits carried out in
Refs. [5, 6]. Figure 1 shows the P -wave ππ phase shifts due to the individ-
ual resonances, corresponding to poles (all members of a cluster for a given
resonance) on different Riemann sheets. Of course, only the full phase shift
has the correct threshold behavior, given by a polynomial with fixed scat-
tering length and effective range. As one would expect, ρ(770) has by far
the largest influence on the overall phase, dominating the contributions of
the ρ excitations. Moreover, the second most important resonance is clearly
ρ(1250), whereas the smallest effect is due to ρ(1450).
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Fig. 1. Upper figure: phase shift due to individual resonances, as well as full phase
and background; lower figure: enlarged fragment from the upper figure.

To properly assess the contribution of individual resonances to the full
amplitude, it is very clarifying to compute it before and after removing
those resonances. Figure 2 displays phase shifts for the full amplitude and
that without terms from individual resonances as the amplitude of ρ(770)
is strongly dominant for the whole energy range. One can notice that be-
low 1 GeV, all other resonances besides ρ(770) have an almost negligible
effect on the full phase shift. Changes by removing this resonance are not
shown, because they would be too large. Once again, one can clearly see
how important the role of ρ(1250) is, in contrast with most notably ρ(1450).
Its influence dominates between 1.0 GeV and 1.5 GeV, being comparable to
that of ρ(1600) and ρ(1800) there-above. The ρ(1450) contribution is quite
small over the entire tested energy range.
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Fig. 2. Upper figure: phase shift from full amplitude (dashed line) and the same
but without ρ(1250) and ρ(1800); lower figure: as the upper figure but enlarged
over a reduced energy interval and also without ρ(1450) and ρ(1600).

Figure 3 shows the ππ inelasticity η for the full amplitude and also
the individual resonances. One can see very well that even below 1.5 GeV
(near the ρρ threshold) inelasticity due to the ρ(1250) amplitude significantly
differs from 1 and together with part from that of ρ(770) almost completely
determines the inelasticity of the full amplitude. Contributions from ρ(1450)
and ρ(1600) largely cancel each other between the ρ2π and ρρ thresholds
i.e. between 1.05 GeV and 1.55 GeV respectively. Above roughly 1.5 GeV,
ρ(1800) determines the energy dependence of η almost entirely, interfering
with the still large but already rather unstructured ρ(1250) part comparable
in size to that of ρ(770). The contribution of ρ(1450) to η is very small above
1.5 GeV. As expected, it only has a minor maximum at about 1.4 GeV. The
significant drop in the full inelasticity at about 1.6 GeV is mostly determined
by ρ(1600), after the opening of the ρρ channel. The role of the background
in building η is small, showing a slow and smooth rise.
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Fig. 3. Inelasticity due to individual resonances, full amplitude, and background.

Just as in the case of the phase shift, the energy dependence of the
inelasticity for the amplitude without a given resonance, i.e., by omitting all
poles associated with it on the different Riemann sheets, is very informative.
In Fig. 4, we see that removing ρ(1250) would cause the largest change after
that caused by ρ(770) to the inelasticity curve as compared to the one due to
the full amplitude. Similarly, a significant modification would be caused by
leaving out ρ(1600) or ρ(1800), but only around 1600 MeV or there-above,
respectively. Finally, also here we observe that without ρ(1450), there would
only be a modest change to η, over a relatively small energy region below
1.5 GeV, having little effect on the shape of the inelasticity curve.

Fig. 4. Inelasticity due to full amplitude and the same without individual reso-
nances.
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4. Conclusion

The results of our combined analyses unmistakable demonstrate the ne-
cessity to include a ρ′ resonance at about 1.26 GeV. The stability of the fitted
pole positions as well as the manifest fulfillment of multichannel unitarity
and optimized crossing symmetry in our approach lend strong support to
the reliability of our excited ρ states, including the ones at about 1.42 GeV,
1.60 GeV, and 1.78 GeV. Straightforward spectroscopic arguments then im-
pose the following quark-model assignments: ρ(1250)/2 3S1, ρ(1450)/1 3D1,
ρ(1600)/3 3S1, and ρ(1800)/2 3D1. Confirmation of these four states, which
were already found in a previous analysis [4], poses serious problems to main-
stream quark models, unless at least ρ(1250) is interpreted as a crypto-exotic
tetraquark state, for which there is no experimental or theoretical support.

We are indebted to E. van Beveren for providing us with many references
concerning the ρ(1250) resonance.This work was partly financed by the Na-
tional Science Centre, Poland (NCN) grant No. 2018/29/B/ST2/02576.
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