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The paper presents the developments and preliminary results related
to the implementation of a Machine Learning based Algorithm for recon-
struction of the long-lived particles in an upgraded LHCb experiment. The
analysis is based on a Monte-Carlo simulation prepared for LHC Run 3
data-taking conditions. Studied tracks are reconstructed with an official
LHCb software application Moore in configuration that is very close to the
one that will be operated as a part of the final software trigger system.
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1. Introduction

Large Hadron Collider beauty (LHCb) is one of the four large experi-
ments operating currently at the Large Hadron Collider (LHC) and is de-
signed to search for new physics phenomena in the heavy flavor quark sector
and perform precise measurements of CP symmetry violation in beauty and
charm quarks sector. At present, the detector is undergoing a major up-
grade. To filter out the data produced by each proton–proton interaction, a
robust and efficient trigger system is required. In the upgraded system, the
hardware trigger that worked based on information from Calorimeters and
Muon Systems is completely removed instead a flexible fully-software trigger
will be used. The Machine Learning based long-lived particle reconstruction
algorithm is a part of this new upgraded system. It will apply a cascade
of filters to remove fake tracks and improve both the efficiency and purity
of the reconstructed tracks. The Machine Learning models are trained with
simulated samples that may not reproduce all of the properties of collision
data. This will require careful monitoring and appropriate updates of the

∗ Presented at the 28th Cracow Epiphany Conference on Recent Advances in Astropar-
ticle Physics, Cracow, Poland, 10–14 January, 2022.

(3-A36.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=15&aid=3-A36


3-A36.2 S. Hashmi

models with re-tuned Monte-Carlo events. The LHCb experiment collected
during Run 1 and Run 2 a data sample corresponding to the integrated lu-
minosity of 9 fb−1, whilst after Run 3 and Run 4, the integrated luminosity
should reach at least 50 fb−1. Thus, applying a flexible and configurable
software trigger is vital for the LHCb upgrade by enabling us to collect far
larger data samples without compromising the performance of the hardware
channels imposed by the previously operated hardware trigger.

2. Large Hadron Collider

Large Hadron Collider (LHC) is currently the largest and most powerful
particle accelerator in the world. LHC is designed to accelerate protons
and heavy ions. The nominal centre-of-mass collision energy for protons is
13 TeV. The LHC particle accelerator is not a single ring but uses several
other machines that accelerate the colliding beams in stages. The cascade
includes both linear and circular accelerators. The final beams of protons
or ions can cross at four points along the LHC tunnel providing data for all
experiments.

Fig. 1. LHC complex.
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In Fig. 1, the LHC complex is shown. The acceleration chain starts
with the hydrogen which is ionized to produce protons for the Liniac2 linear
accelerator. Next, the beam is injected into the Proton Synchrotron Booster
and then into Proton Synchrotron (PS) to raise its energy up to 25 GeV.
The proton beam is then moved to Super Proton Synchrotron (SPS) and
accelerated to 450 GeV. Later on, in the final stage, the proton beam is
injected into the LHC beam pipes for further acceleration.

Fig. 2. LHCb Tracking Systems.

3. LHCb tracking and high-level trigger systems

LHCb is a forward general-purpose detector with a unique coverage of
2 < η < 5 detecting 40% of all heavy quarks produced by the proton–proton
collisions.

There are three main sub-detectors (Fig. 2) designed for the reconstruc-
tion of charged particles emerging from the collisions. They perform track
reconstructions with a momentum resolution 0.5% for the particle momenta
p < 20 GeV/c and 1.0% at 200 GeV/c with 95% efficiency.

3.1. LHCb Upgrade I

The LHCb experiment completed the first decade of data collection and
analysis in Run 1 and 2. Currently, LHCb is undergoing a final commis-
sioning in preparation for Run 3 which starts in 2022. There are significant
upgrades in LHCb, including the implementation of full software trigger and
replacing the previous tracking detectors completely [1]. This upgrade helps
to overcome the bottleneck in the read-out system. Significant improvement
is instantaneous luminosity that increased from 11 fb−1 to 25 fb−1.
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3.2. LHCb upgrade tracking system

Vertex Locator (VELO) is the detector situated the closest to the col-
lision point with active elements reaching approximately up to 6 mm from
the proton beams. Upstream Tracker (UT) is the second tracking system
placed after VELO and before bending magnets. Finally, the Scintillating
Fibre Tracker (SciFi) detector is placed after the magnet. Most studies at
LHCb are based on so-called long tracks that are registered by all tracking
detectors. Long tracks are normally generated from the decay products of
short-lived particles (e.g., B or D mesons). In this paper, we concentrate
on studying so-called downstream tracks that are created by the daughter
charged particles of long-lived composite particles such as K0

S and Λ that
decay outside VELO, thus leaving no signals at VELO but only in UT and
SciFi detectors.

3.3. High level trigger

At each collision, numerous particles are produced what corresponds to
a vast volume of generated data. Most of the information is not relevant
for the LHCb analyses so, the software trigger is designed to store only the
necessary high-level objects needed for reconstruction the desired decays.
The remaining raw data will be discarded to the safe storage and push
the number of accepted events as high as possible. This novel approach
is called the LHCb Turbo Stream and will allow to study extremely rare
decay modes. The requirements on the tracking quality are very hard since
after the data will be stored, no re-processing will be possible. A part of
the HLT processing chain is the long-lived particles reconstruction algorithm
described in the next section.

4. Long-lived track reconstruction algorithm
with Machine Learning

The general idea of enhancing the currently used long-lived tracking pro-
cedure is to apply a sequence of Machine Learning based classifiers that act
as filters. This approach can lead to enriching the purity of reconstructed
track sample while keeping as high efficiency as possible. In this paper, we
report on the first stage filter for classifying the SciFi track segments. In or-
der to perform the training of selected Machine Learning models, a large set
of simulated physics events is needed. Using appropriate extrapolation to
the Run 3 conditions, signal samples have been produced and processed by
the same software that will be used in the final HLT system. Using the sim-
ulated samples, we can perform the best case scenario the so-called “cheated
analysis” where we have access to all the information regarding the recon-
structed objects (such as true particle identification or true momentum).
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With this information, we can work out the true label for each event in the
training data set that is divided into true and fake SciFi tracks1. A True
Track label is assigned to a SciFi seed when it is associated with an MC-
particle that has hits in the UT detector and no hits in the VELO. A veto
on the electron PID is also imposed for the True Tracks. A Ghost Track
label, on the other hand, is assigned to tracks that have no MC particle
associated [2].

The simulated data set used in the training of the SciFi tracks classifier
was creating with the following signal samples: K0

S → π+π− and Λ →
pπ+/Λ → pπ−.

After processing the data, approximately 10 million tracks are obtained
each of which is described by 12 kinematical variables (features in Table 1)
that reflect the characteristics of the tracks. The pool of tracks contains
approximately 2 million True Tracks. The distribution of the kinematical
variables is presented in Fig. 3 and Fig. 4.
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Fig. 3. Kinematic variables.

1 In the first stage of these studies, we consider only the SciFi segments that are
the seeding part of full downstream tracks. We are going to use this simplification
throughout the text and designate the SciFi seeds as tracks.
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Fig. 4. Kinematic variables.
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Table 1. The kinematic variables.

Variable Description
χ2/n.d.f. The variable determined by Pat-Seeding Algorithm
Nhits Number of hits constructing a seed

Momentum Momentum of the track
Position X The X-position of track’s first state
Position Y The Y -position of track’s first state
Position R The distance to track’s first state from beam line

Tx Slope of track in X–Z plane
Ty Slope of track in Y –Z plane
η Pseudo-rapidity
pT Transverse momentum

5. Initial results

From the processed data, we can build a Machine Learning based binary
classifier to increase the purity of tracks by flagging the data into True
Tracks and Ghost Tracks. There are many Machine Learning/Deep Learning
Algorithms available, out of which a few most popular ones were studied to
build a reliable classifier for the used set of track data.

The Run 2 long-lived track reconstruction algorithm has evolved to a
stage where a set of two classifiers were used to discriminate the fake tracks.
It was integrated into the HLT processing chain and showed significant im-
provements compared to the Run 1 implementation. Since Run 3 conditions
are significantly different from Run 2 ones, the previous version of the algo-
rithm has to be replaced with a new one and improved Machine Learning
models, trained with new simulated events, for better performance.

After several computational analyses, boosting based algorithm, Cat-
boost Classifier has been selected to proceed with the final algorithm for the
SciFi seeds filter, due to its novelty and measured performance (see Fig. 5).
For more thorough evaluation of the model quality, two main metrics are
used: Accuracy Score (Eq. (1)) and F1 Score (Eq. (2)). Due to the imbalance
in the evaluation set, accuracy of the model will not be a good matrix to
evaluate the quality of the model

Accuracy Score =
TP + TN

TP+ FP + FN+ TN
, (1)

F1 Score = 2× Precision× Recall

Precision + Recall
. (2)
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Fig. 5. Normalised confusion matrix for ML model track predictions.

6. Future plans and conclusions

The upgraded LHCb experiment will be the leading experiment in new
physics searches and precise CP violation measurements. The significant
increase in integrated luminosity of data to be taken during both Run 3
and Run 4 will bring the statistical uncertainties to the level of theoretical
ones. A long-lived track reconstruction algorithm using Machine Learning
approach may play a significant role in studying new possible exotic particles
with lifetimes large enough to avoid detection in the vertex detector.

The future plans of the research include the implementation of the second
stage filtering for the full downstream tracks, feature engineering and search
for the optimal hyper-parameters, study the performance in terms of the
track efficiency and purity, verifying the model performance in real-time with
real data and, finally, integration of the model with the existing downstream
algorithm for better track quality and efficiency.
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