
Acta Physica Polonica B Proceedings Supplement 16, 1-A118 (2023)

RESULTS FROM A CGC AND PROPER TIME
EXPANDED CALCULATION OF GLASMA

PROPERTIES∗

Margaret E. Carringtona, Alina Czajkab

Stanisław Mrówczyńskib,c

aDepartment of Physics, Brandon University
Brandon, Manitoba R7A 6A9, Canada

bNational Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland
cInstitute of Physics, Jan Kochanowski University

Uniwersytecka 7, 25-406 Kielce, Poland

Received 5 July 2022, accepted 19 September 2022,
published online 14 December 2022

We present some results that describe the properties of the glasma
phase that exists at very early times after a relativistic heavy-ion collision.
We discuss the isotropization of the glasma, the Fourier coefficients of the
momentum flow, and the momentum broadening of a hard probe traversing
the glasma.
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1. Introduction

We use a Colour Glass Condensate (CGC) approach and a proper time
expansion to calculate correlators of glasma chromodynamic electric and
magnetic fields. More details on our method and a complete discussion of
our results can be found in [1–5]. Correlators of chromodynamic fields can
be used to study a number of observables. In these proceedings we present
some of our main results, including the first three Fourier coefficients of
the momentum flow, and the momentum broadening coefficient for a hard
probe passing through a glasma. It is usually assumed that these quantities
develop almost exclusively during the hydrodynamic phase of the evolution
of the system. Our calculation shows that the contribution of the glasma
phase is much larger than anticipated.
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The CGC method was introduced in [6–8] and has been developed over
a period of 20 years by many authors. The proper time expansion was first
proposed in [9] and has been used in several calculations since its introduc-
tion. Our work represents the first serious attempt to study the radius of
convergence of the expansion.

2. Results

The glasma is produced in a highly anisotropic initial state. A key ques-
tion is if the effect of the interactions is such that the glasma moves towards
isotropy before it transforms into a quark–gluon plasma. To study this, we
look at the quantity [10] ATL ≡ 3(pT−pL)/(2pT+pL), where pT and pL are
the transverse and longitudinal pressures, which would be zero in an equili-
brated isotropic plasma. Figure 1 shows ATL at three different orders in the
proper time expansion. The independent variable is the dimensionless pa-
rameter τ̃ = τQs, where τ is the proper time and Qs is the saturation scale,
which is set to 2.0 GeV. The figure shows that the radius of convergence of
the proper time expansion is approximately τ̃ ≈ 0.5, which corresponds to
τ ≈ 0.05 fm, and that over the range where the expansion can be trusted,
the value of ATL moves monotonically toward the isotropic value of zero.

0.1 0.2 0.3 0.4 0.5 0.6
τ
˜

1

2

3

4

5

6

ATL

τ2

τ4

τ6

Fig. 1. ATL at R = 5 fm and η = 0 for three different orders in the τ expansion.

We can also use our results for the glasma field correlators to calculate
the Fourier coefficients of the momentum flow. Flow vectors are used as
input in hydrodynamic codes, and the Fourier coefficients are related to
experimental observables. In figure 2, we look at the first three Fourier
coefficients as functions of space-time rapidity and impact parameter, at
τ = 0.04 fm. The left panel shows v1, v2 and v3 at τ = 0.04 fm with
b = 2 fm as a function of rapidity; in the right panel η = 0.1 and the
independent variable is the impact parameter. Our results for the second
and third Fourier coefficients are of the same order as experimental values
[11, 12], and our result for |v1| is much bigger than expected [13]. We note
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Fig. 2. The Fourier coefficients v1, v2, and v3 at τ = 0.04 fm. The left panel is for
fixed b = 2 fm and the right panel is for fixed η = 0.1.

however that it is usually assumed that anisotropy develops mostly during
the hydrodynamic evolution that follows the glasma phase, and from this
perspective, our results are surprisingly large for all three Fourier coefficients.

One of the most important physical observables in the study of QGP
physics is jet broadening, which is generally taken to be a signal of the
formation of a deconfined state of matter. Theoretically, one usually studies
the momentum broadening of a hard probe. A Fokker–Planck approach can
be used to determine the momentum broadening coefficient, q̂, of a hard
probe traversing a glasma [1, 4, 14]. Figure 3 shows q̂ versus τ at different
orders in the proper time expansion. The figure shows that the order τ5

results are reliable to about τ = 0.07 fm, and the momentum broadening
coefficient saturates before the expansion breaks down.

Fig. 3. The transport coefficient q̂ of an ultra-relativistic quark with velocity per-
pendicular to the beam axis at different orders in the proper time expansion.

Our calculation does not describe the decrease of q̂ from the value of
≈ 6 GeV2/fm at τ ≈ 0.06 fm which is seen in figure 3 to the much smaller
value that is characteristic of the hydrodynamic phase. However, assum-
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ing a simple linear decrease until the start of hydrodynamic evolution at
τ ≈ 0.6 fm, one can estimate that the contributions of the glasma phase and
the hydrodynamic phase are approximately equal [5], which contradicts the
common assumption that the contribution from the glasma phase can be
neglected.

3. Conclusions

We have used a CGC approach and an expansion in proper time to derive
analytic results for all correlators of chromodynamic electric and magnetic
field components to sixth order in the proper time. These results can be used
to obtain the energy-momentum tensor, from which many physical quanti-
ties can be derived. In these proceedings, we have discussed the evolution of
the transverse and longitudinal pressures towards isotropy, and the Fourier
coefficients of the momentum flow. We can also use the field correlators we
have calculated to determine transport coefficients, using a Fokker–Planck
method. We have presented our results for the momentum broadening co-
efficient and argued that the contribution to this quantity from the glasma
phase is much larger than expected.
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