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We study the far-off-equilibrium dynamics of a Bjorken expanding non-
conformal system within kinetic theory and hydrodynamics. We show that,
in contrast to the conformal case, neither shear nor bulk viscous pressure re-
lax quickly to a non-equilibrium attractor. In kinetic theory, an early-time,
far-from-equilibrium attractor exists for the scaled longitudinal pressure,
driven by the rapid longitudinal expansion of the medium. Second-order
dissipative hydrodynamics fails to accurately describe this attractor, but a
modified anisotropic hydrodynamic formulation reproduces it and provides
excellent agreement with kinetic theory.
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1. Introduction

In recent years, several studies comparing higher-order hydrodynamic
theories to conformal kinetic theory in boost-invariant flow profiles have re-
vealed a surprising success of hydrodynamics in providing a near-accurate
description of the system’s macroscopic dynamics even when the medium is
very far from local equilibrium. An important feature that emerged from
these studies is the existence of a far-from-equilibrium attractor in hydrody-
namic theories [1] to which various initializations of viscous stresses decay via
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power law at large Knudsen numbers [2, 3]. However, almost all these com-
parisons of hydrodynamics with kinetic theory have focused on conformal
systems with highly symmetric expansion profiles. Here, we investigate the
domain of applicability of second-order non-conformal hydrodynamics, by
comparing it with kinetic theory for systems undergoing (0+1) dimensional
expansion with Bjorken symmetry [4, 5].

2. Kinetic theory

We consider the evolution of the single-particle distribution function
f(x, p) satisfying Bjorken symmetries, described by the Boltzmann equa-
tion with a collision term in relaxation time approximation (RTA)

∂f

∂τ
= −f − feq

τR(τ)
, (1)

where feq represents the equilibrium distribution function. We parametrize
the relaxation time as τR = 5C/T , where T is the temperature and C is
a unitless constant. The above kinetic equation can be solved exactly [6],
and appropriate moments of the distribution function give the exact evo-
lution of the hydrodynamic quantities. The initial distribution function is
parametrized to allow for large initial bulk and shear stresses [4, 5].

2.1. Kinetic bounds on viscous stresses

Bjorken symmetry dictates the energy-momentum tensor to be diagonal,
Tµν = diag(ϵ, PT, PT, PL), where ϵ, PT, and PL are the energy density, and
effective transverse and longitudinal pressures, respectively. The latter can
be expressed in terms of the equilibrium pressure (P ), bulk viscous pressure
(Π), and a single independent shear stress tensor component π ≡ −τ2πηη:
PT = P +Π + π/2 and PL = P +Π − π. Positivity of distribution function
imposes in kinetic theory the following bounds on the normalized viscous
stresses π̄ ≡ π/P and Π̄ ≡ Π/P [4]:

Π̄ +
1

2
π̄ ≥ −1 , Π̄ − π̄ ≥ −1 , Π̄ ≥ −1 , Π̄ ≤ ϵ

3P
− 1 . (2)

Solutions of the kinetic equation satisfy these bounds at all times.

2.2. Free-streaming evolution

In Bjorken flow, the early-time dynamics of the medium is governed by
the fast longitudinal expansion and approximately free-streaming. The free-
streaming solution of Eq. (1) is simply ffs(τ ; pT, p

z) = fin(pT, p
z(τ/τ0)), i.e.,

the distribution function becomes sharply peaked around pz = 0 as time
increases. Some free-streaming trajectories in the π̄–Π̄ plane are shown in
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Fig. 1 (a); the shaded blue region represents the bounds mentioned in Eq. (2).
The black crosses indicate different initializations with m = 50 MeV and
T0 = 500 MeV at initial time τ0 = 0.1 fm/c, and arrows indicate the direction
of time. All trajectories are seen to move towards the line PL = 0 which
acts like an attractive fixed line. Under backward evolution, represented by
the dashed lines, all trajectories are seen to merge at the point (Π/P = 0,
π/P = −2) as τ → 0; this point is thus a repulsive dynamical fixed point.

(a) (b)

Fig. 1. (Color on-line) Evolution of viscous stresses in the free-streaming limit (a)
and including microscopic interactions (b). Figures adapted from Refs. [4, 5].

3. Dynamics at finite Knudsen number

Microscopic interactions force the medium to depart from free-streaming
dynamics and drive it towards local momentum isotropy. Their effect on the
expansion trajectories is shown in Fig. 1 (b). Microscopic collisions build up
longitudinal pressure and thus push the trajectories away from the PL = 0
line. Eventually, the system thermalizes locally and, after reaching the
Navier–Stokes limit, converges to the thermal equilibrium point π̄ = Π̄ = 0.

Figure 2 shows the evolution of the bulk and shear inverse Reynolds
numbers, Re−1

Π ≡ Π/(ϵ+P ) and Re−1
π ≡ π/(ϵ+P ), as functions of the scaled

time τ̄ ≡ τ/τR, for a microscopic interaction strength given by C =10/4π.
Blue solid curves are solutions of the RTA Boltzmann equation and red
dashed ones represent solutions of second-order Chapman–Enskog hydrody-
namics [7]. The black dotted curve is the first-order Navier–Stokes (NS)
solution.

One naively expects to recover the attractor structure of conformal sys-
tems for evolution with small values of bulk viscous pressures. However,
the shear stress trajectories in Fig. 2 (b) as seen to converge only at τ̄ ≳ 2
(magnitudes of the initial bulk viscous pressure are small as can be seen in
Fig. 2 (a)). This contrasts sharply with the pattern observed in conformal
systems where different initializations of shear stresses rapidly approach an
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early-time attractor on a much shorter time scale that is controlled by the
initialization time τ0 [2, 3]. For large initial bulk stress ,the convergence of
trajectories is delayed even further [4, 5]. Therefore, we conclude that in
non-conformal fluids, there is no evidence of early-time attractors for the
shear and bulk viscous stresses.

Fig. 2. (Color on-line) Evolution of the (a) bulk and (b) shear inverse Reynolds
numbers. Figures adapted from Refs. [4, 5].

The absence of far-off-equilibrium attractors for the viscous stresses begs
the question whether such an attractor exists at all in non-conformal sys-
tems. We find that an early-time attractor does manifest in the evolution
of the effective longitudinal pressure. The key to finding it is the realization
that for Bjorken flow, due to the divergence of the expansion rate at τ → 0,
the early-time dynamics is approximately free-streaming, and the line PL=0
acts as an attractor for this free-streaming medium (see Fig. 1 (a)).

Figure 3 shows the evolution of the scaled longitudinal pressure PL/P as
a function of the scaled time τ̄ . The initial conditions considered in Fig. 3 (a)
correspond to those of Fig. 2, amended by additional initial conditions with
the vanishing shear stress. The interaction strength parameter has been
changed to C = 3/4π (shorter relaxation times). Kinetic theory solutions
(blue solid lines) are seen to join already at times τ̄ < 1 a universal attractor
that starts from PL/P ≈ 0 at τ̄0→ 0. As the system isotropizes, this universal
curve approaches unity, joining the first-order Navier–Stokes solution (black
dotted curve) at τ̄ ≳ 4. The same features are seen in Fig. 3 (b) where we
have considered different initial conditions with m = 200 MeV. We conclude
that only PL=P+Π−π has a far-from-equilibrium attractor, driven by the
approximate free-streaming dynamics of Bjorken flow at early times. Only
in conformal systems, where PL and π describe the same physics (PL/P =
1− π/P ), they also share this attractor.

The non-conformal hydrodynamic trajectories in Fig. 3 (a) (red dashed
lines) do not exhibit a universal early-time attractor; universality is seen
only at τ̄ ≳ 4 when they merge with the NS attractor. Clearly, second-
order non-conformal hydrodynamics is not an accurate approximation of
the underlying kinetic theory before τ̄ ≃ 3.
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(b)(a)

m=50 MeV

T0=500 MeV
m=200 MeV
T0=500 MeV

Fig. 3. (Color on-line) Evolution of the scaled longitudinal pressure. Figures adapt-
ed from [4, 5].

4. Anisotropic hydrodynamics

We now come to the dashed red lines in Fig. 3 (b). In the standard proce-
dure, hydrodynamic equations are derived from kinetic theory by expanding
the phase-space distribution function f(x, p) around a locally isotropic equi-
librium distribution. However, for Bjorken flow this distribution, and its
leading-order corrections, do not follow the rapid shrinking of the pz dis-
tribution caused by the rapid expansion rate at early times. As a result,
hydrodynamics fails to reproduce the early-time behavior.

To address this shortcoming, anisotropic hydrodynamics (aHydro) was
introduced [8–10]. However, the standard derivation of aHydro, which is
based on an expansion of the distribution function around an ellipsoidally
deformed distribution of Romatschke–Strickland form [11], does not allow to
simultaneously generate large temperatures (T ≫ m) and large bulk viscous
pressures Π/P ≃ −1 [5]. This problem can be circumvented by considering
a modified ansatz for the leading-order anisotropic distribution [5], with an
additional non-equilibrium fugacity factor

f ≈ f̃a =
1

α(τ)
exp

−

√
p2T + (1+ξ(τ))w2/τ2 +m2

Λ(τ)

 . (3)

In Fig. 3 (b), we compare the evolution described by the resulting modi-
fied aHydro equations with the exact kinetic result, for the scaled longitudi-
nal pressure (comparisons for other hydrodynamic quantities can be found
in [5]). The modified aHydro solutions (red dashed lines) are seen to be in
excellent agreement with the exact kinetic results (blue solid lines). Modi-
fied aHydro also reproduces the rapid convergence of solutions with arbitrary
initial conditions onto an early-time far-from-equilibrium attractor (the low-
ermost blue solid curve) at τ̄ < 1, long before they merge with the late-time
Navier–Stokes attractor (black dotted curve) at τ̄ ≳ 3.
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5. Conclusions

We studied the expansion of a non-conformal system whose microscopic
dynamics is governed by the RTA Boltzmann equation. In kinetic theory, we
demonstrated that, different from conformal systems, only the longitudinal
pressure features an early-time, far-off-equilibrium attractor. It is governed
by the rapid, approximately free-streaming expansion of the medium at early
times, and its existence relies on the fact that for Bjorken flow at early
times, the expansion rate hugely exceeds the scattering rate. Shear and
bulk viscous stresses do not feature a far-off-equilibrium attractor. Their
early-time dynamics is characterized by strong bulk-shear coupling effects
which depend sensitively on initial conditions. Only in conformal systems,
where the shear stress and longitudinal pressure describe identical physics,
do PL and π share an early-time attractor.

We also found that for non-conformal systems, standard dissipative hy-
drodynamics is unable to describe the early-time dynamics, in particular
the far-from-equilibrium attractor for PL. However, a modified version of
anisotropic hydrodynamics reproduces it well.
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