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Out of the many exciting results obtained with the lattice approach to
QCD under extreme conditions, I discuss a few selected items related to
chiral symmetry: the chiral condensate as an approximate order parameter,
meson screening masses, and masses of baryons and mesons, including D(s)

mesons, when approaching the crossover from the hadronic side.
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1. Introduction

Lattice QCD is the first-principle method to study QCD under extreme
conditions, at least along the temperature axis in the QCD phase diagram
and while considering equilibrium conditions. Indeed, studies of QCD ther-
modynamics, including e.g. the equation of state and fluctuations of con-
served charges, are nowadays routinely done at the physical point while
taking the continuum limit [1–4]. Extensions to nonzero baryon density
have to deal with the sign problem, which can be confidently handled either
at real but small quark chemical potential, or at imaginary quark chemical
potential, after analytical continuation.

A clear next step, going beyond thermodynamics and the phase struc-
ture, is to consider the behaviour of hadrons. Heavy quarks (charm and
bottom) and quarkonium states (charmonium and bottomonium) have been
in the spotlight for a long time, due to their relevance for heavy-ion phe-
nomenology. In this presentation, I will not be able to do justice to these
developments. Instead, I will focus on the light-quark sector, emphasing
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chiral symmetry and its impact beyond the identification of the transition.
In particular, I will discuss three aspects: the chiral condensate as an ap-
proximate order parameter; mesonic screening masses; baryon and meson
masses, especially when approaching the crossover from the hadronic side.

2. Chiral symmetry and the thermal crossover

Chiral symmetry is an approximate symmetry, spontaneously broken in
the hadronic phase. Observables linked to chiral symmetry are used to iden-
tify the thermal crossover, notably the chiral condensate and its fluctuations,
the chiral susceptibility χ (see Fig. 1). In fact, the most precise determi-
nation of the pseudocritical temperature has been obtained from the latter,
with the recent values

Tχpc = 158.0(6) MeV Budapest–Wuppertal–Houston [5] ,
Tχpc = 156.5(1.5) MeV HotQCD [6] .

Fig. 1. Chiral condensate as a function of temperature, for several values of an
(imaginary) baryon chemical potential (left, Budapest–Wuppertal–Houston [5]),
and several values of the lattice spacing a ∼ 1/Nτ (right, HotQCD [6]).

From a lattice perspective, the results quoted here have been obtained using
staggered quarks, for which simulations are carried out at the physical point
and a continuum extrapolation is feasible. The Wilson-type quarks are more
expensive to simulate and hence results are not available at both the physical
point and in the continuum limit. Yet there is steady progress here as well,
as demonstrated in Fig. 2, which includes results from the twisted-mass [7]
and Wilson-clover [8] fermions. These are not both at the physical point (i.e.
mπ > mnature

π ) and in the continuum limit; nevertheless, an extrapolation
in mπ using the Wilson-type quarks only yields T ψ̄ψpc = 158(3) MeV at the
physical point [8], in agreement with the numbers quoted above.
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Fig. 2. Pion mass dependence of the pseudocritical temperature, obtained using the
twisted-mass (first three symbols), staggered (HotQCD, WB), and Wilson-clover
(FASTSUM) fermions, for several quantities related to the chiral susceptibility [7].

3. Mesonic screening masses

Going beyond thermodynamics, one may ask how chiral symmetry
restoration affects hadrons and quarks. As a first step, we consider me-
son screening masses (or spatial screening lengths). These are computable
on the same lattices as used for thermodynamics, since the computation
benefits from large spatial volumes, while the Euclidean time is integrated
over. Screening masses interpolate between the pole mass at T = 0 and

Fig. 3. Left: screening masses as a function of temperature, for ūd mesons [9].
Right: screening masses normalised with 2πT , up to very high temperature [10].
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q ≈ 2πT at high T . They can, therefore, be used to probe both
chiral symmetry restoration as well as the perturbative high-temperature
limit.

This is demonstrated in Fig. 3: screening masses in the light-quark sector
are shown on the left [9], with, in particular, the degeneracy in the vector (ρ)
and axial-vector (a1) channels emerging at or close to the transition. Nor-
malised screening masses up to very high temperatures (note that units
are GeV) are given on the right, including small but numerically significant
deviations from 2πT , which can be analysed in the perturbation theory [10].

4. Baryon and meson masses

Phenomenologically, the interest lies not so much in screening masses
but rather in hadron masses. Ideally, information on the spectrum and
in-medium modification is extracted from spectral functions ρ(ω,p;T ). Un-
fortunately, the inversion of the integral relating the Euclidean correlator
and the spectral function is a classic ill-posed problem. The next best thing
is to start with the assumption that hadrons exist at low temperature, with
a computable mass for the ground-states, and subsequently, raise the tem-
perature of the hadron gas to follow the response. Ground-state masses are
extracted from temporal lattice correlators, which benefits from having ac-
cess to many Euclidean time points. This motivates the use of anisotropic
lattices, with aτ ≪ as, leading to quite different lattice geometries compared
to the thermodynamic studies.

In the following I will report on work by the FASTSUM Collaboration [8].
Briefly, FASTSUM uses Nf = 2 + 1 flavours of the Wilson-clover quarks,
with an anisotropy of as/aτ ∼ 3.45 and a lattice cutoff of a−1

τ ∼ 6 GeV.
Light quarks are heavier than in nature; results are shown for two sets of
ensembles: Generation 2 with mπ = 384(4) MeV and Generation 2L with
mπ = 236(2) MeV. In Gen2 (2L), we have 4(5) ensembles in the hadronic
phase and 5(6) in the quark–gluon plasma. The transition temperature as
determined by the chiral susceptibility is 170(4) and 165(3) MeV, respec-
tively.

Let us start with baryons [11–13]. Chiral symmetry breaking is man-
ifested here by the absence of parity doubling, i.e. in vacuum positive-
and negative-parity states are nondegenerate1. One can show that if chi-
ral symmetry is unbroken, parity doubling is present, not only for states,
but already at the level of Euclidean correlators [12]. Hence this can be
investigated without any further assumptions on the spectral content. De-
noting the positive/negative-parity correlator with G+/−, we may construct
a quasi-order parameter

1 Consider e.g. the nucleons mN = m+ = 939 MeV and mN∗ = m− = 1535 MeV.
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R =
∑
τ

G+(τ)−G−(τ)

G+(τ) +G−(τ)
,

which interpolates between 1 at low temperature — assuming that the
groundstates m± dominate and that m− ≫ m+ — and 0 when chiral sym-
metry is restored. This R parameter is shown in Fig. 4 for octet and decuplet
baryons, for both sets of ensembles [8]. We observe that indeed R changes
from about one to close to zero, with the inflection points shifting to lower
temperature as the light quarks get lighter. The inflection-point tempera-
tures for the ensembles with the lighter pion lie between 157 and 160 MeV,
close to the thermal crossover.
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Fig. 4. Parity-doubling parameter R as a function of temperature for octet (left)
and decuplet (right) baryons, for two sets of ensembles labelled by the pion mass.
The vertical lines indicate the inflection points, which shift to lower temperature
as the light quarks get lighter [8].

The analysis can be taken a step further, by extracting the ground-state
masses from the lattice correlators, for both parities. The results for the
ensembles with the heavier pion are shown in Fig. 5, in the hadronic phase.
Note that they are normalised with m+ at the lowest temperature. We ob-
serve that the positive-parity masses are mostly independent of temperature,
while the negative-parity masses are reduced, such that an approximate de-
generacy emerges at the thermal crossover (recall that Tpc = 170 MeV for
these data). While the degeneracy is expected, the manner in which this
is realised can only be found by an actual computation. These results can
be used as a benchmark for effective parity-doublet models used at finite
density, see e.g. Ref. [14].

Moving now to the light-meson sector, I present here some preliminary
FASTSUM results obtained by assuming that spectral broadening can be
ignored at low temperature. This assumption can be investigated by a de-
tailed comparison of correlators at different temperatures [15]. Results for
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Fig. 5. Temperature dependence of the ground-state masses, normalised with m+

at the lowest temperature, in the hadronic phase, for octet (left) and decuplet
(right) baryons, for the Gen2 ensembles. Positive- (negative-) parity masses are
indicated with open (closed) symbols [13].

the temperature dependence of the pion and kaon ground-states are shown
in Fig. 6 (left). The light quarks are heavier than in nature, which mostly
affects the pion. Note that the masses of both states appear to increase
slightly as the thermal crossover is approached. On the right, the temper-
ature dependence of the ρ (vector) and a1 (axial-vector) ground-states is
shown. The ρ state is approximately independent of temperature, while the
a1 state shows a rather strong temperature dependence. A degeneracy is
a signal of SU(2)L × SU(2)R chiral symmetry restoration, which is seen to
occur at or very close to the thermal transition, not dissimilar as in the case
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Fig. 6. Temperature dependence of the pion and kaon (left) and the ρ and a1 (right)
ground-state in the hadronic phase, for the Gen2L ensembles. The vertical band
indicates the thermal transition, while the horizontal stubs at T = 0 represent the
PDG value; note that the light quarks are heavier than in nature, which mostly
affects the pion [15].
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of screening masses, see Fig. 3 (left). We emphasise that these results are
obtained under the assumption that narrow spectral functions can be used
to describe the data, which might not be justified, especially in the axial-
vector channel. It is noted that there are many model predictions for the
thermal behaviour in these channels, see e.g. Ref. [16] and references therein.

Finally, we present some FASTSUM results for D and Ds mesons, in the
pseudoscalar and vector channels, see Fig. 7. In this case, the masses are
decreasing as the thermal transition is approached, quite similar, in fact, to
the behaviour seen in effective models [17].
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Fig. 7. As in Fig. 6 for the D and D∗ (left) and the Ds and D∗
s (right) mesons [15].

5. Summary

As it is well known, chiral symmetry is of utmost importance for thermal
QCD. In lattice studies, it is used to study properties of thermal crossover,
providing the most precise estimates of the pseudocritical temperature. Go-
ing beyond thermodynamics, the expected restoration of chiral symmetry
leads to emerging degeneracies in the spectrum, in the case of meson screen-
ing masses, for baryons and parity doubling, and for mesons and chiral
partners. I have presented (new) lattice data in the hadronic phase, indi-
cating a precursor to chiral symmetry restoration already in the hadronic
phase. These results may be compared to effective model descriptions. This
is especially relevant when the latter are extended to regions of the QCD
phase diagram where lattice QCD is not directly applicable

The work presented in Sec. 4 was carried out by FASTSUM and I
thank my colleagues for the fruitful collaboration. FASTSUM acknowledges
DiRAC, PRACE, and Supercomputing Wales for the use of computing re-
sources. I am supported by the UKRI Science and Technology Facilities
Council (STFC) Consolidated Grant No. ST/T000813/1.
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