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The equations of multicomponent relativistic second-order dissipative
fluid dynamics from the Boltzmann equations for a reactive mixture of
Nspec particle species with Nq intrinsic quantum numbers such as electric
charge, baryon number, and strangeness are presented. We discuss the
“single-fluid” description of a multicomponent fluid, which consists of 4+Nq

conservation laws closed by 6+3Nq equations of motion for the dissipative
quantities in the (10 + 4Nq)-moment approximation.
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1. Introduction

Fluid-dynamical modeling of relativistic nuclear matter is commonly
based on the relativistic second-order dissipative fluid-dynamical theory of
Israel and Stewart [1] formulated for a simple fluid, i.e. a single-component
fluid. However, the matter created in high-energy nuclear collisions is funda-
mentally of multicomponent nature consisting of different types of particle
species carrying multiple conserved quantum numbers such as baryon num-
ber B, electric charge Q, and strangeness S. Further, the generated charge
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currents are directly coupled to each other. Therefore, a relativistic fluid-
dynamical theory that accounts for multiple conserved charges in heavy-ion
collisions is necessary. We derive the continuity equations for each con-
served quantum charge as well as the conservation laws for total energy and
momentum in the single-fluid approximation. These equations are closed
by providing second-order equations of motion in the (10 + 4Nq)-moment
approximation for the dissipative quantities [2].

2. The Boltzmann equation for a reactive mixture

In kinetic theory, a mixture of Nspec different particle species or chemi-
cal components is characterized by the single-particle distribution functions
for each particle species i, labeled by a lower index, f (x, ki) ≡ fi,k. The
space-time evolution of the distribution function of species i is given by the
relativistic Boltzmann equation [3, 4]

kµi ∂µfi,k ≡ Ci (x, ki) =

Nspec∑
j=1

Cij [f ] , (1)

where the four-momentum of species i is denoted by kµi , and it is normalized
to the corresponding rest mass squared, kµi ki,µ = m2

i . In the case of binary
inelastic, i.e. reactive collisions, the initial and final particles species may be
different, i+ j → a+ b, such that the collision term reads

Cij [f ]=
1

2

Nspec∑
a,b=1

∫
dK ′

jdPadP
′
bW

pp′→kk′

ab→ij

(
fa,pfb,p′ f̃i,kf̃j,k′−fi,kfj,k′ f̃a,pf̃b,p′

)
,

(2)
where W kk′→pp′

ij→ab are the transition probabilities, while f̃i,k = 1 − aifi,k/gi,
with ai = ±1 for fermions/bosons, and ai → 0 for classical particles, re-
spectively. Here, gi is the spin degeneracy of particle species i, while the
Lorentz-invariant integration measure is dKi = d3ki/[(2π)

3k0i ].
The single-particle distribution function fi,k can be decomposed into an

equilibrium part, f (0)
i,k , and an out-of-equilibrium part, δfi,k, as

fi,k ≡ f
(0)
i,k + δfi,k = gi [exp (βEi,k − αi) + ai]

−1 + δfi,k , (3)

where the (Lorentz-invariant) energy of a particle of species i is defined as
Ei,k = kµi uµ, while uµ is the fluid flow velocity normalized to unity uµuµ = 1.
Above, the local-equilibrium distribution function of species i is given by the
Jüttner distribution function [3, 4], where T ≡ 1/β is the temperature and
µi ≡ βαi is the chemical potential of species i.
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In various inelastic collisions, the particle number corresponding to a
given species is not conserved due to particle creation and annihilation pro-
cesses or various chemical reactions. Therefore, only a few intrinsic quan-
tum numbers, such as electric charge, baryon number, and strangeness are
conserved. Hence, the chemical potential µi of a given particle i may be ex-
pressed in terms of Nq chemical potentials of conserved quantum “charges”

µi ({µq}) ≡
{B,Q,S}∑

q

qiµq = BiµB +QiµQ + SiµS , (4)

where {µq} ≡ {µB, µQ, µS}, with µB, µQ, and µS , being the baryon, electric,
and strangeness chemical potentials, respectively, while Bi, Qi, and Si are
the baryon number, electric charge, and strangeness of species. Furthermore,
qi ≡ ∂µi({µq′})/∂µq denotes the intrinsic quantum number of species i.

The tensor decompositions with respect to the time-like normalized flow
velocity uµ being the eigenvector of Tµνuν = euµ, and summed over all
particle species, lead to the total fluid-dynamical quantities of the mixture

Nµ
q ≡

Nspec∑
i=1

qiN
µ
i =

Nspec∑
i=1

[qiniu
µ + qiV

µ
i ] ≡ nqu

µ + V µ
q , (5)

Tµν ≡
Nspec∑
i=1

Tµν
i =

Nspec∑
i=1

[eiu
µuν − (Pi +Πi)∆

µν + πµν
i ]

≡ euµuν − (P +Π)∆µν + πµν . (6)

The net-charge density, the energy density, and the pressure in equilibrium
as well as the bulk viscous pressure of the mixture are

nq ≡ Nµ
q uµ =

Nspec∑
i=1

qi ⟨Ek⟩i,0 , e ≡ Tµνuµuν =

Nspec∑
i=1

〈
E2

k

〉
i,0

, (7)

P +Π ≡ −1

3
Tµν∆µν = −1

3

Nspec∑
i=1

[
⟨∆µνk

µkν⟩i,0 + ⟨∆µνk
µkν⟩i,δ

]
, (8)

where ⟨· · · ⟩i,0 ≡
∫
dKi (· · · )i f

(0)
i,k and ⟨· · · ⟩i,δ ≡

∫
dKi (· · · )i δfi,k denotes

equilibrium and out-of-equilibrium momentum integrals. The thermody-
namic variables in an arbitrary state not too far from the local equilibrium
are the same as the net-charge densities and the total energy density in some
fictitious local-equilibrium reference state. An equation of state determines
these thermodynamic quantities as functions of temperature and chemical
potentials, i.e. nq = nq (T, {µq}), e = e (T, {µq}), and P = P (T, {µq}).
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The net-particle diffusion, the net-charge diffusion, and the shear-stress
tensor of the mixture are

V µ
q ≡ ∆µ

νN
ν
q =

Nspec∑
i=1

qi

〈
k⟨µ⟩

〉
i,δ

, πµν ≡ ∆µν
αβT

αβ =

Nspec∑
i=1

〈
k⟨µk ν⟩

〉
i,δ

,

(9)
where k⟨µ⟩ = ∆µ

νkν is the orthogonal projection, while k⟨µk ν⟩ = ∆µν
αβk

αkβ

is the symmetric, orthogonal and traceless projection, respectively.
The fluid-dynamical fields of the mixture are a combination of multiple

particle species where the number of particles of an individual species may
or may not be conserved. The mixture will be treated as a single fluid such
that its space-time evolution is governed by a single velocity field uµ, and
thus, it is determined in terms of the total energy-momentum tensor Tµν

and the charge four-currents Nµ
q , with 10 + 4Nq fluid-dynamical fields.

In binary collisions, the net charges as well as the energy and momen-
tum of particles are conserved, and the equations of fluid dynamics of a
mixture may be derived from the Boltzmann equation (1). The Nq charge-
conservation equations read

∂µN
µ
q ≡

Nspec∑
i=1

qiDni +

Nspec∑
i=1

qiniθ +

Nspec∑
i=1

qi∂µV
µ
i

= Dnq + nqθ + ∂µV
µ
q = 0 , (10)

where D = uµ∂µ or an overdot denotes the proper-time derivative and θ =
∂µu

µ is the expansion scalar. The conservation equations of total energy
and total momentum of the mixture are

uν∂µT
µν ≡

Nspec∑
i=1

Dei +

Nspec∑
i=1

(ei + Pi +Πi) θ −
Nspec∑
i=1

πµν
i σµν

= De+ (e+ P +Π) θ − πµνσµν = 0 , (11)

∆µ
β∂αT

αβ ≡
Nspec∑
i=1

(ei + Pi +Πi)Duµ −∇µ

Nspec∑
i=1

(Pi +Πi) +∆µ
β∂α

Nspec∑
i=1

παβ
i

= (e+ P +Π)Duµ −∇µ (P +Π) +∆µ
β∂απ

αβ = 0 , (12)

where σµν = ∇⟨µuν⟩ is the shear-stress tensor. Therefore, in a dissipative
mixture of Nq conserved charges, we have only 4+Nq conservation equations.
The additional 6 + 3Nq equations for the dissipative fields Π, V µ

q , and πµν

are derived from the Boltzmann equation, see Ref. [2] for more details.
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The resulting equation of motion for the bulk viscous pressure is

τΠΠ̇ +Π = −ζθ − δΠΠ Πθ + λΠπ π
µνσµν −

{B,Q,S}∑
q

ℓ
(q)
ΠV ∇µV

µ
q

−
{B,Q,S}∑

q

τ
(q)
ΠV V µ

q u̇µ −
{B,Q,S}∑

q,q′

λ
(q,q′)
ΠV V µ

q ∇µαq′ . (13)

Similarly, the equations of motion for the charge diffusion currents read

{B,Q,S}∑
q

τq′q V̇
⟨µ⟩
q + V µ

q′ =

{B,Q,S}∑
q

κq′q ∇µαq −
{B,Q,S}∑

q

τq′q Vq,νω
νµ

−
{B,Q,S}∑

q

δ
(q′,q)
V V V µ

q θ −
{B,Q,S}∑

q

λ
(q′,q)
V V Vq,νσ

µν

−ℓ
(q′)
V Π ∇µΠ+ ℓ

(q′)
V π ∆µν∇λπ

λ
ν +τ

(q′)
V Π Πu̇µ −τ

(q′)
V π πµν u̇ν

+

{B,Q,S}∑
q

λ
(q′,q)
V Π Π∇µαq −

{B,Q,S}∑
q

λ
(q′,q)
V π πµν∇ναq , (14)

while the equation of motion for the shear-stress tensor leads

τππ̇
⟨µν⟩+πµν = 2ησµν+2τπ π

⟨µ
λ ω ν⟩λ−δππ π

µνθ−τππ π
λ⟨µσ

ν⟩
λ +λπΠ Πσµν

−
{B,Q,S}∑

q

τ
(q)
πV V ⟨µ

q u̇ν⟩ +

{B,Q,S}∑
q

ℓ
(q)
πV ∇⟨µV ν⟩

q

+

{B,Q,S}∑
q,q′

λ
(q,q′)
πV V ⟨µ

q ∇ν⟩αq′ . (15)

Equations of motion (13), (14), and (15) are of relaxation-type similarly
to the second-order theories of Israel and Stewart [1], and are identical to
those found earlier in Refs. [5, 6]. Furthermore, these equations are formally
similar to the relaxation equations of a single-component system but feature
different transport coefficients, which contain the microscopic interactions
of all components. For a single-component fluid, i.e. for Nspec = Nq = 1,
the results of Ref. [7] are identically reproduced.

Here, the first-order transport coefficients of the mixture are: the bulk
viscosity ζ, the diffusion coefficients κqq′ , and the shear viscosity η. These
are obtained by summing over all particle species
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ζ ≡ −
Nspec∑
s=1

m2
s

3
ζs,0 , η ≡

Nspec∑
s=1

ηs,0 , κqq′ ≡
Nspec∑
s=1

qsκs,0,q′ . (16)

The relaxation time of the bulk viscos pressure τΠ , the diffusion currents,
τqq′ , and the stress tensor τπ are related to the inverse of the linearized
collision term (2), while all the remaining second-order transport coefficients
are listed in Ref. [2].
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