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We construct a framework to describe the dynamics of the critical fluc-
tuations in high-energy nuclear collisions. We consider the relaxation time
τR for the baryon diffusion current and the coupling of the chiral conden-
sate fluctuation δσ to the baryon density fluctuation δn. We apply this
framework to a one-dimensionally expanding system with the QCD critical
point and investigate the effects of the relaxation time τR and the mode
coupling on the correlation of baryon density fluctuations δn as a function
of the rapidity interval. We show that the non-zero relaxation time makes
the signal propagate at a finite speed, which results in a time lag in the
response of correlation evolution of baryon number fluctuations δn from
chiral fluctuations.
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1. Introduction

The search for the QCD critical point is one of the main topics in high-
energy nuclear collisions. A number of experimental programs, including
the Beam Energy Scan (BES) programs at the Relativistic Heavy-Ion Collier
(RHIC) [1] and future experiments FAIR, NICA, J-PARC-HI, and HIAF aim
to find signals of the QCD critical point and the first-order phase transition.
To experimentally detect the signals, it is important to eventually develop a
dynamical model that can quantitatively describe the evolution of the dense
QCD matter created in the nuclear collisions. As a first step toward this
ultimate goal, we investigate the qualitative nature of the dynamics of the
critical fluctuations in the longitudinally expanding systems.

∗ Presented at the 29th International Conference on Ultrarelativistic Nucleus–Nucleus
Collisions: Quark Matter 2022, Kraków, Poland, 4–10 April, 2022.

(1-A155.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=16&aid=1-A155


1-A155.2 A. Sakai et al.

Critical phenomena associated with the QCD critical point are char-
acterized by enhanced fluctuations of the chiral condensate σ = ⟨q̄q⟩ and
the baryon number density nB = ⟨q̄γ0q⟩. In the idealized systems close to
equilibrium, the fluctuations of (non-conserved) chiral condensate can be in-
tegrated out as a fast mode so that the critical dynamics is governed by the
fluctuations of the baryon number density and other hydrodynamic modes.
However, it is non-trivial whether we may eliminate the σ mode as a fast
mode in the realistic situations where the time-scale separation is unclear.
In addition, the standard dynamical models are based on the second-order
hydrodynamics where non-hydrodynamic modes of the second-order cor-
rection of the dissipative currents play an important role in causality and
stability. For a consistent extension of the second-order model, it is impor-
tant to revive the dynamical σ mode and examine its effect. In this study,
we construct a model of critical fluctuations by coupling the chiral conden-
sate fluctuation δσ ≡ q̄q − ⟨q̄q⟩ to the baryon number density fluctuation
δn ≡ q̄γ0q− ⟨q̄γ0q⟩ and the dynamical baryon diffusion current ν. We then
analyze the two-point correlation in a one-dimensionally expanding system.

2. Model

We extend the coupled Langevin equation [2, 3] introducing the relax-
ation time τR and the dissipative current ν

d(δσ)

dt
= −Γ

δF

δ(δσ)
+ λ̃∇2 δF

δ(δn)
+ ξσ , (1)

τR
dν

dt
+ ν = λ̃∇ δF

δ(δσ)
+ λ∇ δF

δ(δn)
+ ξn , (2)

d(δn)

dt
= −∇ · ν . (3)

The noise terms ξσ and ξn are randomly sampled by the Gaussian distribu-
tion satisfying the fluctuation–dissipation relations (FDR)〈

ξσ(x)ξσ
(
x′
)〉

= 2TΓδ4
(
x− x′

)
, (4)〈

ξσ(x)ξn,i
(
x′
)〉

= 2T λ̃δ4
(
x− x′

)
, (5)〈

ξn,i(x)ξn,j
(
x′
)〉

= 2Tλδijδ
4
(
x− x′

)
, (6)

where Γ, λ, and λ̃ are the transport coefficients. The Ginzburg–Landau
functional F is given by

F [δσ, δn] =

∫
d3x

[a
2
(∂iδσ)

2 + b∂iδσ∂iδn+
c

2
(∂iδn)

2 + V (δσ, δn)
]
, (7)

V (δσ, δn) =
A

2
δσ2 +Bδσδn+

C

2
δn2 . (8)
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We relate the parameters A, B, and C to the susceptibility χ as

A(T )C(T )−B(T )2

A(T )
=

1

χ(T )
, (9)

so that the potential has a flat direction at the critical temperature Tc. We
parameterize the susceptibility χ(T ) as in Ref. [4].

3. Results

We follow the space-time evolution of δσ and δn in a Bjorken-expanding
system. The time dependence of temperature is parameterized as T (τ) =

T0

(
τ0
τ

)c2s . We set the initial time τ0, initial temperature T0, and sound
velocity c2s as 0.6 fm, 220 MeV, and 0.15, respectively. We choose the critical
temperature Tc as 160 MeV. We introduce the conserved baryon density in
τ–ηs space as δñ ≡ τδn.

In Fig. 1, we illustrate the Green functions at τ = 0.85 fm, obtained
from the initial conditions of the smeared delta function δσ(ηs, τ0) =

1√
2πw2

exp(− η2s
2w2 ) with w = 0.1 and vanishing baryon density fluctuation

δñ(ηs, τ0) = 0, and without the noise terms. In panel (a), the effect of the
relaxation time τR on δσ is found to be small. In panel (b), we see that
the baryon density fluctuation is induced by the coupling between δσ and
δn. We also observe that δñ diffuses to large ηs instantly with the vanish-
ing relaxation time (solid red) while it diffuses at a finite speed with the
finite relaxation times (long-dashed green and dashed blue). The diffusion
for τR = 2.0 fm is slower than that for τR = 1.0 fm.
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Fig. 1. (Color online) Distribution of (a) δσ(ηs, τ) and (b) δñ(ηs, τ) at τ = 0.85 fm
with different relaxation times τR. The solid red line is for the vanishing relaxation
time, and the long-dashed green and dashed blue are for τR =1.0 fm and 2.0 fm,
respectively.

We next analyze the correlation function C(∆ηs, τ) with different relax-
ation times

C (∆ηs, τ) =
⟨δñ(ηs, τ)δñ(ηs +∆ηs, τ)⟩

⟨δñ(ηs, τ0)2⟩
. (10)
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The delta function in FDR (4)–(6) is smeared by the Gaussian of the
width 0.1. We initialize δñ(ηs, τ0) with the thermal distribution and cal-
culate C(∆ηs, τ) by only considering δñ. In Fig. 2 (a), we see a peak at
Tc = 160 MeV, which is shown in blue (star). With a larger relaxation time,
the peak shifts to a lower temperature ∼ 150 MeV shown in magenta (open
circles), which means that the finite relaxation time causes a time lag in the
response.
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Fig. 2. (Color online) Correlation function C(∆ηs, τ) (a) for vanishing relaxation
time, (b) τR = 1.0 fm, and (c) τR = 2.0 fm.

4. Conclusion

We have constructed a dynamical model for the critical dynamics in an
expanding system. We coupled the baryon density fluctuation to the chi-
ral condensate fluctuation and also introduced the baryon relaxation time.
Within this model, we analyzed 1+1D space-time evolution of these fluctu-
ations and their correlations. We showed that the non-zero relaxation time
makes the signal propagate at a finite speed, which results in a time lag in
the response of correlation evolution. As an outlook, we plan to analyze the
effect of critical fluctuations on experimental observables by implementing
it in a fluctuating hydrodynamic model in the future.
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