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We review recent progress in relativistic hydrodynamics, discussing
causal and stable first-order hydrodynamics, known as BDNK theories,
hydrodynamic attractors, as well as hydrodynamics near the chiral critical
point and spin hydrodynamics.
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1. Introduction

Relativistic hydrodynamics is a well-established theory with a long his-
tory and a wide range of applications. In particular, it turned out to ex-
tremely successfully describe the so-called quark–gluon plasma created in
relativistic heavy-ion collisions [1, 2]. Hydrodynamic behavior is character-
ized by the property that a system can be effectively described without full
knowledge of its microscopic properties by fundamental principles such as
conservation laws. Standard hydrodynamics is based on the conservation
equations for the charge current Nµ and the energy-momentum tensor Tµν ,

∂µN
µ = 0 , ∂µT

µν = 0 . (1)

In traditional approaches, hydrodynamics is regarded as the classical, long-
time and long-wavelength limit of the underlying fundamental quantum the-
ory. In particular, this means that the system is assumed to be near local
equilibrium, implying that the so-called Knudsen number Kn ≡ lmfp/lhydro,
where lmfp is the mean free path and lhydro is a scale characterizing inverse
gradients of hydrodynamic fields, is sufficiently small. However, recent devel-
opments suggest that hydrodynamics may give a useful description of a sys-
tem even beyond the mentioned limits, extending hydrodynamic frameworks
in order to include far-from-equilibrium dynamics [3–12], short-wavelength
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phenomena like chiral symmetry breaking [13–17] or quantum phenomena
like spin [18–35]. Furthermore, there has been important progress in the past
years in formulating causal and stable first-order hydrodynamics, known as
Bemfica–Disconzi–Noronha–Kovtun (BDNK) theories [36–41].

2. First-order hydrodynamics

In many contexts, hydrodynamics can be derived by an expansion in
Knudsen numbers around local equilibrium. Up to first order, such an ex-
pansion yields the so-called Navier–Stokes theory. However, in the relativis-
tic case, Navier–Stokes equations of motion violate causality [42], leading to
numerical instability, and are therefore not applicable in relativistic systems.
Recently, it was found in Refs. [36–38] that the acausality and instability of
relativistic first-order hydrodynamics can be cured, leading to the so-called
BDNK formulation of first-order hydrodynamics. Consider the decomposi-
tion of the energy-momentum tensor with respect to the fluid velocity uµ,

Tµν = (ϵ0 +A)uµuν −∆µν(P0 +Π) + uµhν + uνhµ + πµν , (2)

with ∆µν ≡ gµν − uµuν , ϵ0 and A being the equilibrium and nonequilib-
rium energy density, respectively, P0 the thermodynamic pressure, Π the
bulk viscous pressure, hµ the heat current, and πµν shear-stress tensor. Up
to first order in Knudsen numbers, the dissipative components of Tµν can
be expressed as gradients of temperature and fluid velocity, such that the
conservation of energy-momentum in principle yields a closed system of dif-
ferential equations to determine these quantities, given that a frame-choice
condition as well as so-called matching conditions are supplemented. In
Navier–Stokes theory, one commonly chooses the so-called Landau frame in
order to define the fluid velocity, i.e., one sets hµ ≡ 0 and A ≡ 0. In this
case, the system of equations of motion is acausal and unstable. However,
the explicit form of these equations depends on the frame choice as well as
on the matching and, therefore, these conditions can be chosen in a way
which ensures causality, stability, and well-posedness. This procedure has
successfully been applied to derive causal, stable, and well-posed first-order
hydrodynamics in Refs. [36–40]. Furthermore, in Refs. [43, 44] also transient
hydrodynamics with a general frame choice has been studied.

3. Hydrodynamic attractors

A maybe surprising feature of hydrodynamics is its ability to describe
certain systems which are not close to local equilibrium, in other words,
systems with large a Knudsen number. In this context, the existence of so-
called attractor solutions [3], which determine the early- as well as late-time
behavior of these systems, turned out to be of significant importance. In
the following, we will review as an example studies on attractors and fixed



New Developments in Relativistic Hydrodynamics 1-A17.3

points in kinetic theory and hydrodynamics for boost-invariant systems both
in the conformal limit [4, 8, 10] and in the massive case [11, 12].

While hydrodynamics is characterized by macroscopic equations of mo-
tion, kinetic theory describes microscopic dynamics by the Boltzmann equa-
tion

pµ∂µf(x, p) = C[f ] , (3)

where f(x, p) is the distribution function and C[f ] is the collision term. From
Eq. (3) various types of dissipative hydrodynamic equations of motion can be
derived by using different methods, such as an expansion in Knudsen num-
bers, referred to as Chapman–Enskog expansion, or the method of moments,
where certain moments of the distribution function with respect to momen-
tum are treated dynamically, leading to transient fluid dynamics. Examples
for the latter theories are Israel–Stewart (IS) [45], Denicol–Niemi–Molnar–
Rischke (DNMR) [46], or anisotropic hydrodynamics (a-hydro) [47, 48].

One way to explore the suitability of these theories to correctly describe
the microscopic dynamics is to analyze attractors and fixed points both
of the Boltzmann equation and the respective hydrodynamic equations of
motion. In Refs. [4, 8, 10], the authors derive equations of motion for the
moments of the distribution function from the Boltzmann equation, analyze
their fixed points, and identify attractor solutions in a conformal boost-
invariant system. It is found that for a boost-invariant expanding plasma,
the transition from the free-streaming to the hydrodynamic regime (i.e., the
regime of small Knudsen number) is controlled by an attractor related to
the presence of fixed points in both regimes. Furthermore, already the two-
moment truncation of the equations of motion describes the evolution of
the system well, since the fixed points are already present in this truncation
and slightly modified by the coupling to higher moments. Interestingly, it is
found that a modification of the second-order transport coefficients in order
to put the fixed points in the right location in the free-streaming regime
leads to a formulation of second-order viscous hydrodynamics which very
accurately describes the exact solution of the Boltzmann equation already
at early times.

We now turn to the case of a nonconformal, boost-invariant expanding
system considered in Refs. [11, 12]. When studying the transition from the
free-streaming to the hydrodynamic regime, it is found that, in contrast to
the massless case, no early-time attractor for the pressure Π nor for the shear
stress π (which is in Bjorken symmetry the only nonzero component of the
shear-stress tensor πµν) exists. On the other hand, defining the longitudinal
pressure PL ≡ P0 +Π − π, it turns out that the solution PL = 0 acts as an
attractive fixed point for the equation of motion of the distribution function
and, therefore, an early-time attractor solution for the longitudinal pressure
can be identified. Furthermore, a comparison of hydrodynamic frameworks
shows that, in contrast to hydrodynamics obtained by a Chapman–Enskog
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expansion, anisotropic hydrodynamics features the correct locations of the
fixed points and, therefore, describes the longitudinal pressure well even at
early times.

4. Hydrodynamics with chiral symmetry breaking

One of the main purposes of studying relativistic heavy-ion collisions is to
explore the phase diagram of quantum chromodynamics (QCD). In order to
make use of a hydrodynamic approach to describe the chiral phase transition,
the hydrodynamic model has to be extended in order to include additional
modes. A well-known example for such an extended hydrodynamic theory
is hydro+ [13], where fluctuations near the chiral critical point are described
by additional slow modes. While this theory, first proposed in Ref. [13],
originally takes into account the slowest critical mode and is valid up to
a regime, where k ∼ ξ−2 with k the wave number and ξ the correlation
length, it has recently been extended to a regime with k ∼ ξ−1, i.e., to
be valid closer to the chiral critical point, where the correlation length is
larger [14]. Furthermore, a freeze-out procedure to convert the chiral critical
fluctuations in hydro+ into measurable cumulants of hadron multiplicities
has been developed in Ref. [49].

Another approach to hydrodynamics with chiral symmetry breaking has
been proposed in Refs. [15, 16]. These works are based on the idea that be-
low the critical temperature, when a chiral condensate is formed, the chiral
symmetry is spontaneously broken, leading to the appearance of Goldstone
modes, which are treated as new hydrodynamic modes. The resulting theory
is then analogous to a non-Abelian superfluid. Since the chiral symmetry is
explicitly broken by the finite quark mass, the Goldstone modes become ir-
relevant on long distances ℓ ≫ m−1

π , where mπ is the pion mass, and ordinary
hydrodynamics is recovered. On the other hand, considering wavelengths of
the order of m−1

π , superfluid modes become relevant and result in correc-
tions to the usual transport coefficients. These corrections were calculated
in Ref. [16] starting from an effective action and computing current–current
and stress–stress correlation functions through linear response theory [see
also Ref. [17] for a computation with real-time simulations on the lattice].

5. Spin hydrodynamics

Recent progress in developing a theory of relativistic spin hydrodynamics
is mainly motivated by polarization measurements of Lambda hyperons in
noncentral heavy-ion collisions, where the global rotation of the system gen-
erates polarization through the conversion of orbital angular momentum into
spin [50]. While hydrodynamic calculations in local equilibrium assuming
spin to be determined by thermal vorticity were able to predict measure-
ments of the global Lambda polarization [51], the same models failed to
describe the momentum dependence of the local polarization [52, 53]. Re-
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cently, there has been promising progress toward resolving this puzzle by
including contributions from the thermal shear tensor to the polarization in
local equilibrium [54–57]. On the other hand, quantitative results for dissi-
pative contributions to the polarization have not been obtained up to now.

The basic idea in spin hydrodynamics is to promote the spin tensor
Sλ,µν , which is part of the total angular-momentum tensor Jλ,µν = xµT λν −
xνT λµ + ℏSλ,µν , to an additional hydrodynamic variable [18]. Its equation
of motion is obtained from the conservation of total angular momentum

ℏ∂λSλ,µν = T νµ − Tµν . (4)

In a relativistic theory, the definition of the spin tensor is not unique, but
is subject to the so-called pseudo-gauge freedom [58]. While in general the
energy-momentum tensor is not symmetric and, therefore, the spin tensor is
not conserved, it is possible to find pseudo-gauges with conserved spin tensor
for free fields, such as the Hilgevoord–Wouthuysen (HW) and de Groot–van
Leeuwen–van Weert (GLW) pseudo-gauges [22].

In order to derive dissipative corrections to the spin tensor, a useful
starting point is kinetic theory with spin, where the phase space is enlarged
by an additional variable sµ, i.e., the Boltzmann equation is of the form of
[21, 59, 60]

p · ∂f(x, p, s) = C[f ] . (5)

In Refs. [20, 24], the authors make use of a Chapman–Enskog-like expansion
of the distribution function with a Boltzmann equation of the form of (5)
with the collision term C modeled by a relaxation-time approximation to
obtain the first-order dissipative corrections to the GLW spin tensor. On the
other hand, in Ref. [33], the method of moments is applied to derive second-
order dissipative spin hydrodynamics from a Boltzmann equation of the form
of (5) with a nonlocal collision term which is responsible for the conversion
between orbital angular momentum and spin [21]. In this framework, the
spin moments corresponding to the dissipative components of the HW spin
tensor are treated as new dynamical variables of the theory. It should be
noted that the local collision term determines the relaxation times of the spin
moments, while the nonlocal collision term contributes to the Navier–Stokes
limit. The relaxation times of the spin moments are slightly smaller than
those of other dissipative quantities, but of the same order of magnitude.
For this reason, it makes sense to treat spin as a dynamical degree of freedom
in second-order dissipative hydrodynamics.

A different way to obtain an explicit form of the spin tensor is through
variation of the QCD action and linear response theory in a general rela-
tivistic framework [26]. In order to couple spin and gravity, one considers a
torsionful background. The spin tensor is then given by the variation of the
action with respect to the spin connection, corresponding to the so-called
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canonical pseudo-gauge with nonsymmetric energy-momentum tensor. Us-
ing linear response theory, dispersion relations for the spin modes are ob-
tained in Ref. [26], which feature nonhydrodynamic spin modes due to the
fact that the spin tensor is not conserved. In the considered regime with
T ≪ m, it is found that the spin relaxation rate Γs is much smaller than the
relaxation rate Γ of the other nonhydrodynamic modes, Γs ∼ (T/m)Γ ≪ Γ ,
where m is the mass and T is the temperature.

6. Conclusions

Although relativistic hydrodynamics is an old and well-established the-
ory, many of its aspects are not yet fully understood and active research in
different directions is still ongoing. Recently, a new theory of causal and
stable first-order hydrodynamics, BDNK theory, was developed. Further-
more, new directions of relativistic hydrodynamics were explored, namely
far-from-equilibrium hydrodynamics, hydrodynamics with chiral symmetry
breaking, and spin hydrodynamics.
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