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We establish the existence of a far-from-equilibrium attractor in the
weakly-coupled gauge theory undergoing 0+1d Bjorken expansion which
goes beyond the energy-momentum tensor to the detailed form of the one-
particle distribution function. We then demonstrate that the dynamics
can be rescaled at intermediate times and represented by universal expo-
nents. Finally, we assess different procedures for reconstructing the full
one-particle distribution function from the energy-momentum tensor along
the attractor and discuss implications for the freeze-out procedure used in
the phenomenological analysis of ultra-relativistic nuclear collisions
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1. Introduction

In the precision era of heavy-ion collisions, there has been an increased
interest in understanding and quantifying the effects of non-equilibrium cor-
rections present at different stages of heavy-ion collisions. Non-equilibrium
corrections are significantly present and particularly important in two main
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phases of the dynamical evolution: (I) pre-hydrodynamics (pre-equilibrium)
and (II) freeze out (particlization). Non-equilibrium attractors can be used
to explore the approach to equilibrium and have been widely applied to ex-
amine the applicability of hydrodynamic theories out-of-equilibrium in many
approaches. In [1], we employ a microscopic approach based on quantum
chromodynamics (QCD) effective kinetic theory (EKT), which is derived
using weak-coupling methods. The method is applicable at high tempera-
tures and is appropriate for modelling the initial stages of ultra-relativistic
heavy-ion collisions. In parametrically isotropic systems, EKT [2, 3] gives a
leading-order accurate description (in αs) of the time evolution of the one-
particle distribution function in QCD and allows for a numerical realization
of the so-called bottom-up thermalization scenario [5]. The description is
based on the relativistic Boltzmann equation

−df(p)

dτ
+

pz
τ
∂pzf = C1↔2[f(p)] + C2↔2[f(p)] , (1)

where f(p) is the gluonic one-particle distribution function (per degree
of freedom). The elastic scattering term C2↔2 and the effective inelas-
tic term C1↔2 include physics of dynamical screening and the Landau–
Pomeranchuck–Migdal suppression. For the numerical solution of Eq. (1), we
discretize n(p) = p2f(p) on an optimized momentum-space grid and use the
Monte Carlo sampling to compute the integrals appearing in the elastic and
inelastic collisional kernels. The algorithm used is based on Refs. [3, 4, 6, 7].

2. Non-equilibrium QCD attractor for higher moments

The time evolution of integral moments which characterize the momen-
tum dependence of the distribution function is given by [8]

Mnm(τ) ≡
∫

d3p

(2π)3
pn−1 p2mz f(τ,p) , (2)

where p = |p|. Note that the energy density is given by ε = νM20, lon-
gitudinal pressure by PL = νM01, and number density by n = νM10

for ν degrees of freedom (ν = 2dA for dA adjoint degrees of freedom).
These moments will be scaled by their corresponding equilibrium values
with Mnm

(τ) ≡ Mnm(τ)/Mnm
eq (τ), where, using a Bose distribution, one

obtains

Mnm
eq =

Tn+2m+2Γ (n+ 2m+ 2)ζ(n+ 2m+ 2)

2π2(2m+ 1)
. (3)

The temperature T here corresponds to the temperature of an equilibrium
system with the same energy density, given by T = (30ε/νπ2)1/4.
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These simulations are initialized with either of the two following initial
conditions: (1) spheroidally-deformed thermal initial conditions which we
will refer to as “RS” initial conditions [9]

f0,RS(p) = fBose

√
p2 + ξ0p2z
Λ0

, (4)

where −1 < ξ0 < ∞ encodes the initial momentum anisotropy and Λ0

is a temperature-like scale which sets the magnitude of the initial average
transverse momentum, or (2) non-thermal colour-glass-condensate (CGC)
inspired initial conditions [4]

f0,CGC(p) =
2A

λ

Λ̃0√
p2 + ξ0p2z

e−
2
3(p

2+ξ0p̂2z)/Λ̃2
0 . (5)

In Fig. 1, we present results for the evolution of three scaled moments,
M 01, M 21, and M 33, in panels (a), (b), and (c), respectively. In the top
panels, we fix the initialization time and examine the existence of the forward
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Fig. 1. (Colour on-line) Evolution of the scaled moments (a) M 01
, (b) M 21

,
and (c) M 33

as function of the rescaled time variable τ/τR, where τR is the
instantaneous interaction time. The top row corresponds to varying the initial
anisotropy (ξ0) and bottom row to varying the initialization time τ0. Black dotted
and dashed lines show the EKT evolution with RS and CGC initial conditions,
respectively. The purple solid line is the exact RTA attractor, the orange long-
dashed line is the first-order gradient expansion result, the blue dot-dashed line
is the DNMR vHydro attractor, and the red dot-dot-dashed line is the aHydro
attractor.
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attractor or the convergence toward the late time equilibrium state of the
system. In the bottom panels which correspond to the “pullback” attractor
or the convergence to the free streaming phase of the dynamics, we vary the
initialisation time toward asymptotically early times τ ∼ 0. As we show in
Fig. 1, different solutions to Eq. (1) collapse to a universal curve at roughly
τ/τR ∼ 0.5 which indicates insensitivity to initial anisotropy and occupancy
and confirms the existence of an attractor solution [1].

2.1. Re-scaling the turning point

In addition to looking for scaling properties at early and late times
[10, 11], one can then also investigate whether there is universal scaling
dynamics in the initialization time ω0 = τ0/τR at the turning point. With
ω ≡ τ/τR, we define the latter as the time ωnm(ω0) of the minimum of the
moment Mnm

(ω0), assuming that both ωnm and Mnm are power laws in
ω0 with Mnm ∼ ωAnm

0 and ωnm ∼ ωBnm
0 . If we also assume that the scaling

exponents for fixed n,m are universal and independent of the initial condi-
tions, we can estimate their value by taking the average of the exponents
from the fits to the RS and CGC initial conditions. Then, taking both Anm

and Bnm to depend linearly on n and m, the resulting fits are

Anm = −0.0604726 (2− n) + 0.340507m, (6)
Bnm = 0.51845− 0.0285393n+ 0.0452043m. (7)

Interestingly, we notice that the exponent Bnm seems to be approximately
1/2 with small corrections for different n,m, while the exponent Anm shows
strong dependence on m and depends on n only weakly [12] (see Fig. 2).
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Fig. 2. Rescaled moments Mnm
/ωAnm

0 as functions of ω/ωBnm
0 for different sets

of initial conditions and initialization times ω0 = τ0/τR. Rescaling a particular
moment and the scaled time ω reproduces a universal rescaling at the turning
point at which the microscopic interactions begin to take over the dynamics.
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3. Reconstructing the one-particle distribution function from Tµν

While the fluid-dynamic theories do not specify the higher moments of
the distribution functions, in phenomenological applications, it is a common
practice to infer the full shape of the distribution from the shear components
of the energy-momentum tensor only for use in freeze-out. For a given Tµν ,
the linearized viscous correction to the one-particle distribution function,
δf , can be locally computed given an assumption of the collision kernel.
Herein, we consider two possible forms for δf . The (i) quadratic ansatz

δf(i)

feq(1 + feq)
=

3Π̄

16T 2

(
p2 − 3p2z

)
, (8)

which results from a wide set of models. Here, Π̄ = Π/ϵ = 1/3 − T zz/ϵ.
At full leading order, however, QCD EKT has a more rich structure; for
large p ≫ T , QCD EKT reduces to power law form of the (ii) Landau–
Pomeranchuck–Migdal (LPM) ansatz

δf(ii)

feq(1 + feq)
=

16Π̄

21
√
π T 3/2

(
p3/2 − 3p2z√

p

)
. (9)

This p1.5 power law is numerically close to ∝ p1.38, which was found to
describe the high-momentum region of the full EKT result [13]. Finally,
we consider the non-linear (iii) aHydro freeze-out ansatz in which one as-
sumes that the distribution function can be approximated by a spheroidally-
deformed Bose-distribution f(p) = fBose(

√
p2 + ξp2z/Λ) [9, 14, 15].

The different moments obtained by the above prescriptions are compared
to the EKT attractor solution in Fig. 3. At late times τ > 5 τR, the low-
order moments are described within a few percent by all the prescriptions,
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Fig. 3. (Colour on-line) Evolution of the scaled moments (a) M 11
, (b) M 21

, and (c)
M 22

. The black solid line is a typical EKT evolution, the red dashed line is the PL-
matched aHydro result for a given moment, blue long-dashed and green dot-dashed
lines are the corresponding vHydro results using using Eqs. (8) and (9), respectively.
The relative error shown in the bottom panels is (approximation/EKT−1).
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while some discrepancy remains even at τ ∼ 20 τR between the quadratic
ansatz (i) and our EKT results. The agreement worsens at earlier times
and, around τ ∼ τR where the corrections to longitudinal pressure start
to become sizable PL/P

eq
L ∼ 65%, M11 exhibits an approximately 20%

disagreement between EKT and both linearized ansatze. The disagreement
increases for higher moments and at earlier times. In contrast, we observe
good agreement between the aHydro ansatz and our EKT results at all
times. As a result, when considering higher moments or applying early-time
freeze-out for smaller systems such as peripheral nucleus–nucleus collisions
and proton–nucleus collision, the aHydro freeze-out ansatz is favoured.
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