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We use a novel formulation of the relaxation time approximation to
consistently calculate the bulk and shear viscosity coefficients using QCD-
inspired energy-dependent relaxation times and phenomenological thermal
masses obtained from fits to lattice QCD thermodynamics. The matching
conditions are conveniently chosen to simplify the computations.
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1. Introduction

Nuclear matter in extreme conditions can be investigated through ultra-
relativistic heavy-ion collisions. In particular, obtaining the transport coef-
ficients of the quark–gluon plasma, throughout the QCD phase diagram, is
a very challenging task that is currently beyond the reach of first-principles
techniques [1]. In this contribution, we compute the transport coefficients of
an effective kinetic model [2, 3] with a temperature-dependent mass whose
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equation of state mimics lattice QCD thermodynamics [4]. We use the new
relaxation time approximation (RTA) of the relativistic Boltzmann equa-
tion proposed in [5] and impose alternative matching conditions such that
the interaction energy [6] depends only on the temperature even out of equi-
librium.

2. The quasi-particle model

The relativistic Boltzmann equation for quasi-particles with a tempera-
ture-dependent mass, M(T ), is given by [7]

pµ∂µfp + 1
2∂iM

2(T )∂i
(p)fp = C [fp] , (1)

where fp = f(x,p) is the single-particle distribution function. Above, ∂i
(p) =

∂/∂pi, and C [fp] is the collision integral.
In the limit of vanishing net-charge, the main dynamical equation is the

continuity equation for the energy-momentum tensor, Tµν ,

∂µT
µν = 0 . (2)

In the presence of a thermal mass, Tµν ≡ ⟨pµpν⟩ + gµνB, where B is the
interaction energy [6], gµν denotes the metric, ⟨· · ·⟩ =

∫
dP · · · fp,

∫
dP =

g
∫
d3p/[(2π)3Ep], with g being the degeneracy factor and Ep =

√
p2 +M2.

The interaction energy B satisfies the following dynamical equation:

∂µB = −1
2∂µM

2⟨1⟩ , (3)

which is valid both in and out of equilibrium. We consider the Maxwell–
Boltzmann statistics so that in equilibrium fp = exp (−βuµp

µ) ≡ f0p, with
β = 1/T and uµ being the fluid 4-velocity (which satisfies uµu

µ = 1).
The temperature dependence of the mass is obtained such that the equa-

tion of state of the model describes lattice QCD results [4]. Plots for B(T )
and M(T ) can be seen in Refs. [2, 3]. Qualitatively, M(T )/T is very large
at low temperatures and saturates at M(T )/T ≈ 1.1 at high temperatures.

3. Matching conditions and the collision term

The energy-momentum tensor can be decomposed in terms of the 4-ve-
locity uµ as follows:

Tµν = εuµuν − P∆µν + hµuν + hνuµ + πµν , (4)

where ε is the total energy density, P is the total isotropic pressure, hµ is the
energy diffusion, πµν is the shear-stress tensor, and we defined the projection
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operator ∆µν = gµν − uµuν . They are obtained from moments of fp as
explained in [7]. In general, ε0 and P0 may have non-equilibrium corrections,
such that ε = ε0 + δε, P = P0 +Π, respectively.

The meaning of uµ and β for non-equilibrium states is determined by
matching conditions [7]. The most widely used prescription is the one in-
troduced by Landau [8], where δε ≡ 0 and hµ ≡ 0. In the present work,
we choose a new prescription in order to simplify Eq. (3). Specifically, we
impose

⟨1⟩ ≡ ⟨1⟩0 , (5)

where ⟨· · ·⟩0 ≡
∫
dP · · · f0p, which defines the temperature for non-equilib-

rium states. In this matching, δε ̸= 0. To define the 4-velocity, a further
condition is needed. However, since we only consider a fluid at vanishing
chemical potential, our results will not depend on this particular choice.

With prescription (5), the interaction energy can be determined solely
as a function of T , and Eq. (3) can be solved as if the system were in
equilibrium,

∂B(T )

∂T
= −gTM2

2π2
K1

(
M(T )

T

)
∂M(T )

∂T
, (6)

which can be readily integrated since M(T ) is known, and the boundary
condition B(0) = 0 is given. Above, K1 is the first modified Bessel function
of the second kind.

Novel relaxation time approximation

In contrast to the traditional RTA [9], in the new prescription proposed
in Ref. [5] the conservation laws hold at the microscopic level even when
considering momentum-dependent relaxation times and arbitrary matching
conditions. In practice, we approximate the collision term as [3]

C[fp] ≈ −Ep

τR
f0p

ϕp −

〈
ϕp

E2
p

τR

〉
0〈

E3
p

τR

〉
0

Ep −

〈
ϕp

Ep
τR

p⟨µ⟩
〉
0

1
3

〈
∆αβpαpβ

Ep
τR

〉
0

p⟨µ⟩

 , (7)

where ϕp ≡ (fp − f0p)/f0p. We parametrize the energy dependence of the
relaxation time as τR = tR (Ep/T )

γ , where the parameter γ encodes the
information of the underlying microscopic interaction, and tR > 0. For
instance, it has been argued that γ = 1/2 in QCD effective theories [10].
Above, we defined the space-like projection p⟨µ⟩ = ∆µνpν .
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4. Transport coefficients

In first-order theories, equation (2) is complemented by constitutive rela-
tions for the non-equilibrium currents (δε, Π, πµν). In kinetic theory, they
can be calculated using the Chapman–Enskog expansion [7] which, when
truncated at first order, leads to the following relativistic Navier–Stokes for-
mulation of hydrodynamics:

δε = χθ , Π = −ζθ , πµν = 2ησµν . (8)

Using (7), the transport coefficients read [3]

ζ = −1

3

〈
(∆µνpµpν)Ap

τR
Ep

〉
0

−
〈
τR
Ep

Ap

〉
0

I3,1
I1,0

, (9)

χ = −⟨ApτREp⟩0 +
〈
τR
Ep

Ap

〉
0

I3,0
I1,0

, η =
β

15

〈
(∆µνpµpν)

2 τR
Ep

〉
0

, (10)

where Ap = −βc2sE
2
p − β

3∆
λσpλpσ − β2M ∂M

∂β c2s , and c2s ≡ (∂P0/∂ε0) =

(1/β)(I10+I21)/[I30+
1
2I10(∂M

2/∂β)β] is the speed of sound squared, which

is expressed in terms of Inq = 1/[(2q + 1)!!]
〈(

−∆λσpλpσ
)q

En−2q
p

〉
0
.

In Fig. 1, we plot the coefficients as functions of temperature for different
values of the parameter γ, as well as the temperature dependence of the mass.
For all values of γ investigated, ζ ≥ 0 and χ ≤ 0. In both figures, it is seen
that the absolute values of the coefficients grow with γ. At low temperatures,
where the effective mass is large, M/T → ∞, all three normalized coefficients
behave as (M/T )γ−1. For γ = 1, η = tR(ε0 + P0) at all temperatures. In
the opposite limit, M/T → 0, ζ = −(1/3)χ ∝ M(T )(d/dT ) (M(T )/T ), and
η ∼ Γ (γ + 5)/120 1.

Entropy production

The entropy current for classical quasiparticles is Sµ =
∫
dPpµfp(1 −

ln fp). We note that the entropy production does not depend on the choice of
matching conditions [3]. To first order in the Chapman–Enskog expansion,
one finds

∂µS
µ ≃ ζsθ

2 + 2ησµνσµν , ζs =

〈
τR
Ep

[Ap]
2

〉
0

= ζ + c2sχ . (11)

Since both ζs and η are non-negative, so is the entropy production. The
coefficient ζs can be used to provide a matching-invariant interpretation of

1 Even though this is not achieved at high temperatures, where M/T → 1.1 [3], these
expansions serve as estimates.
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bulk viscosity and, indeed, for the Landau matching conditions ζs = ζ.
This coefficient behaves similarly to ζ as a function of temperature, with
the difference that, as M/T → 0, ζs ∝ [M(T )(d/dT )(M(T )/T )]2, thus
displaying a steeper descent at high temperatures in Fig. 1.
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Fig. 1. (Top left) Normalized bulk viscosity, (top right) energy correction coeffi-
cient, (bottom left) shear viscosity, and (bottom right) matching-invariant bulk
viscosity coefficients as functions of temperature. Each transport coefficient is
shown for various values of the parameter γ.

5. Conclusion

In this work, we have computed the first-order transport coefficients of
an effective kinetic model with temperature-dependent mass, using the new
relaxation time approximation proposed in Ref. [5]. We have used an al-
ternative matching condition [Eq. (5)] to simplify the computations, which
in turn imply that there are nonzero out-of-equilibrium corrections to the
energy density. We find that all transport coefficients are significantly af-
fected by the choice of the parameter γ, which defines how the relaxation
time depends on energy. Consistency with the second law of thermodynam-
ics is demonstrated and used to derive a matching-invariant bulk viscosity
coefficient. In future work, we intend to compute the transport coefficients
that appear in other theories of hydrodynamics [11, 12] using the present
model.
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