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We calculate the Wigner function for charged spin-1 particles in inho-
mogeneous classical electromagnetic fields, going to first order in a power
series in ℏ. The Boltzmann equation for the scalar distribution function
obtained from this formalism agrees with previous calculations for spin-1/2
particles. In particular, we recover a Mathisson force of twice the mag-
nitude, correctly reflecting the higher dipole moment of vector mesons.
Evolution equations for vector and tensor degrees of freedom are obtained
and global equilibrium is discussed.
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1. Introduction

Recently, an unexpectedly large tensor polarization of vector mesons has
been observed in heavy-ion collisions [1–3], which has not yet been satisfac-
torily explained, although there is already some theoretical progress [4–7].
In this work, we employ methods similar to Ref. [8] to establish a quantum
kinetic theory for massive spin-1 particles in classical electromagnetic fields
up to first order in the Planck constant ℏ.

Our notation and conventions are: A(µBν) := AµBν +AνBµ , A[µBν] :=
AµBν−AνBµ, Eµν := kµkν/k2, Kµν := gµν−Eµν , A ·B := AµgµνB

ν , where
gµν := diag(1,−1,−1,−1).
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2. Field theory for massive vector particles

We consider the following Lagrangian for a complex Proca field V µ:

L = ℏ
(
−1

2
V †µνVµν +

m2

ℏ2
V †µVµ

)
− 1

4
FµνFµν − iqFµνV

µV †ν , (1)

where q is the electric charge, Fµν := ∂[µAν] is the electromagnetic field
strength tensor, and V µν := D[µV ν], with Dµ := ∂µ + (iq/ℏ)Aµ being the
covariant derivative in the fundamental representation. Note that the last
term enhances the coupling of the Proca field to the electromagnetic field
such that the gyromagnetic ratio is exactly equal to two [9, 10]. The resulting
equations of motion for the Proca field read

D · V = −i
qℏ
m2

J · V , (2)(
D ·D +

m2

ℏ2

)
V ν = 2

iq

ℏ
VµF

µν − i
qℏ
m2

Dν (J · V ) , (3)

where Jµ := −iq[V µνV †
ν − V †µνVν + ∂ν(V

[µV †ν])].

3. Spin-1 quantum kinetic theory

3.1. Wigner function

The Wigner function for charged vector particles in the presence of elec-
tromagnetic fields is defined as [11]

Wµν(x, k) := − 2

(2πℏ)4ℏ

∫
d4v e−ik·v/ℏ

〈
: V †µ

+ U+−V
ν
− :

〉
, (4)

where V µ
± := V µ (x±), x± := x± v/2 and the gauge link U+− := U(x+, x−)

is defined as

U(x, y) := T̂ exp

− iq

ℏ
(x− y) ·

1/2∫
−1/2

dtA

[
x+ y

2
+ t(x− y)

] , (5)

with T̂ being the time-ordering operator. Treating the electromagnetic field
as classical, we may neglect the time ordering operator, as the fields commute
at different times.

Following Ref. [11], we introduce K̂µ := Π̂µ + iℏ
2 ∇̂µ, where Π̂µ :=

kµ − ℏq
2 j1(∆)Fµν∂k,ν and ∇̂µ := ∂µ − qj0(∆)Fµν∂k,ν denote the general-

ized momentum and derivative operators, respectively. Here, ∆ := ℏ
2∂k · ∂
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and j0(x) := sin(x)/x, j1(x) := [sin(x) − x cos(x)]/x2 are spherical Bessel
functions. Note that the derivatives with respect to position contained in
the ∆’s act only on the field strength tensors.

One can prove that the exact equations of motion for the Wigner function
are given by

K̂νWµν =
qℏ2

m2
e−i∆

(
∂αF

αν
)
Wµ

ν , (6)(
K̂ · K̂ −m2

)
Wµν =

(
K̂αK̂

ν − iℏq e−i∆F ν
α

)
Wµα . (7)

Equation (6) follows from Eq. (2) and reduces the number of independent
degrees of freedom of the Wigner function, while Eq. (7) is a consequence of
the field equation (3).

3.2. Decomposition and power counting

We decompose the Wigner function as

Wµν =
gµν

4
V − iSµν + T µν , (8)

where V := Wµ
µ, Sµν := i(Wµν − Wνµ)/2, and T µν := gµναβWαβ , where

gµναβ := g
(µ
α g

ν)
β /2− gµνgαβ/4. Solving Eqs. (6) and (7) up to first order in ℏ,

we obtain

V = δ
(
k2 −m2

)
V − δ′

(
k2 −m2

)
qℏFαβΣ

αβ , (9)

Sµν = δ
(
k2 −m2

)
Σµν − δ′

(
k2 −m2

)
qℏ

(
1

2
FµνV − F [µ

α tν]α
)

, (10)

T µν = δ
(
k2 −m2

)
tµν − δ′

(
k2 −m2

)
qℏgµναβF

α
γ Σβγ . (11)

The evolution of the on-shell parts V,Σµν , and tµν is determined by the
following equations of motion:

0 = δ
(
k2 −m2

) [
k · ∇̂(0)V +

qℏ
2

(
∂γFαβ

)
∂k,γΣαβ

]
, (12)

0 = δ
(
k2 −m2

) [
k · ∇̂(0)Σµν − qF [µ

ρ Σν]ρ − qℏ
2

(
∂γF [µ

α

)
×∂k,γ

(
tν]α +

1

4
gν]αV

)
− qℏ

2m2
Jα

(
tα[µ +

1

4
gα[µV

)
kν]

]
, (13)

0 = δ
(
k2 −m2

) [
k · ∇̂(0)tµν + qF (µ

α tν)α +
qℏ
2
gµναβ

(
∂γFα

ρ

)
∂k,γΣ

βρ

− qℏ
2m2

JαΣ
α(µkν)

]
. (14)
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Here, we defined ∇̂(0)
µ := ∂µ − qFµν∂

ν
k as the expansion of the operator ∇̂µ

to first order in ℏ. These on-shell Boltzmann–Vlasov-like equations closely
resemble those derived in Ref. [8] for spin-1/2 particles, however, with a key
difference. Namely, the parts of the quantity T µν that are orthogonal to
the four-momentum kµ are related to the tensor polarization of the parti-
cles [7, 12], which is a genuine spin-1 property that is absent for spin-1/2
particles. Thus, when setting T µν = 0, we may compare the resulting ex-
pressions to Eq. (60) in Ref. [8]. It becomes clear that, as expected, Eq. (12)
differs by a factor of two in the term resembling the Mathisson force, while
Eq. (13) features a factor of one half in the force term. This is consistent
with the fact that the spin magnitude of vector mesons is twice as large as
that of spin-1/2 particles. Furthermore, it should be noted that the com-
ponents of the Wigner function parallel to the momentum, i.e., the seven
independent quantities kµSµν and kµT µν , are fixed by Eq. (6). In particular,
to zeroth order in ℏ, we have kµSµν = kµT µν = 0. At this order, Eq. (13)
is equivalent to the Bargmann–Michel–Telegdi (BMT) equation [13] for the
classical “spin vector” nµ := −(1/2)ϵµναβ(kν/m)Σαβ , while Eq. (14) gives
the BMT equations for the three (spacelike) eigenvectors of tµν , which we
denote by ϵµi , where i ∈ {1, 2, 3} and ϵi ·k = 0. These equations describe the
precession around the magnetic field in the particle rest frame, cf. Fig. 1.
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Fig. 1. Precession of the vector (left) and tensor (right) polarization around a
magnetic field in the z-direction.

80

Fig. 1. Precession of the vector (left) and tensor (right) polarization around a
magnetic field in the z-direction.
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4. Global equilibrium

Assuming the standard form of the collision term, the equilibrium dis-
tribution function can be parametrized as fe := [exp(ge)− 1]−1, where
ge denotes a combination of the conserved quantities (charge and four-
momentum), i.e., ge := β · k − eα. Here, e ∈ {+,−} distinguishes particles
and antiparticles. The quantities α and βµ are the Lagrange multipliers as-
sociated with the conserved charges. Note that we assume that polarization
effects arise at first order in ℏ. This implies that, compared to the discussion
in Ref. [8], we do not have to add a term ∼ Σµν corresponding to the con-
servation of total angular momentum. From the Boltzmann equation (12) it
follows that in global equilibrium the following conditions have to hold [8]:

∂µα = qFµνβν , ∂(µβν) = 0 . (15)

Employing Eqs. (12)–(14), the components of the Wigner function in global
equilibrium to the order O(ℏ) are given by

T µν +
gµν

4
V = δ

(
k2 −m2

) (
KµνV + ℏΦµν

)
, (16)

Sµν = ℏδ
(
k2 −m2

) [
−
(
ϖµν +

1

2
E [µ

α ϖν]α

)
V ′

+
q

2m2

(
Fµν + 2E [µ

α F ν]α
)
V +Ξµν

]
+ℏδ′

(
k2 −m2

)
qF [µ

α Kν]αV , (17)

where

V :=
1

(2πℏ)3
1

3

∑
e

Θ
(
ek0

)
fe , V ′ :=

1

(2πℏ)3
1

3

∑
e

Θ
(
ek0

) ∂fe

∂ge
, (18)

and we defined the thermal vorticity ϖµν := −(1/2)∂[µβν]. The terms Φµν

and Ξµν follow the BMT equations and are otherwise unconstrained, i.e.,
they provide no information about the medium. On the other hand, the
contribution ∼ ϖµν encodes the massive analogue of the axial chiral vortical
effect, while the terms ∼ Fµν determine the chiral separation effect [14–17].
This can be seen when considering the axial current

Jµ
A =

1

2m

∫
d4k ϵµναβkνSαβ . (19)

Spin-1 particles, in addition to their magnetic dipole moment, possess an
electric quadrupole moment which the electromagnetic field can couple to.
This may induce a tensor polarization even in global equilibrium, but this
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effect is expected to occur at second order in ℏ [18]. In contrast, away from
equilibrium, a nonvanishing tensor polarization is induced by the shear-stress
tensor of the medium [7].
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