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Recent progress of a general deterministic approach to the non-Gaussian
fluctuation dynamics is reviewed, with an emphasis on the derivation of the
fluctuation evolution equations and their phenomenological implication in
heavy-ion collision experiments.
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1. Introduction

Fluctuations are ubiquitous phenomena emerging on all length scales,
from the cosmological length all the way to the size of the quark–gluon
plasma created in heavy-ion collisions, where they could potentially play
essential roles. In many situations, fluctuations are resulted from addition
of independent and random sources on smaller scales and are approximately
described by the Gaussian distribution, per the central limit theorem. In
addition, the time scale of system evolution is usually much larger than
the time scale of the fluctuation equilibration process, so fluctuations can
also be well approximated as in equilibrium. Nonetheless, there are certain
situations where fluctuations can significantly deviate from their Gaussian
and/or equilibrium distribution, and these deviations arouse more and more
interest in various physical subjects in recent years. A typical example,
which will be focused on this work, is the event-by-event fluctuations of
particle multiplicities in heavy-ion collision experiments. The shape of the
multiplicity distribution for the observed particles (e.g., net protons), char-
acterized by its cumulants, carries important information about the collision
process. For example, it was argued that in equilibrium, the higher-order cu-
mulants are more sensitive to the critical point [1, 2], which may give rise to
the non-monotonic energy dependence of the particle fluctuations in heavy-
ion collisions — an intriguing hint of the QCD critical point [3]. However,
since the fireballs created by the collisions of two ultrarelativistic nuclei are
short-lived and rapidly expanding, it would be natural to expect that the
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fluctuations may fall out of equilibrium. Thus, the argument in Refs. [1, 2]
based on the equilibrium theory needs to be amended to incorporate the
non-equilibrium effects of non-Gaussian fluctuations — the major motiva-
tion of Refs. [4, 5]. In this contribution, the progress achieved in Ref. [4]
will be reviewed in Sec. 2. Additional numerical results will be presented
and discussed in Sec. 3. These works altogether constitute an integral part
of the BEST framework [6] for interpreting the forthcoming experimental
results from the second phase of the RHIC Beam Energy Scan program.

2. Fluctuation evolution equations

The Langevin equations for a set of stochastic fields ψis, with the in-
dex i = (i1, i2, . . .) labeling both the variables and their associated space
coordinates (if applicable), read

∂tψi = Fi + ξi , (1)

where Fi and ξi are the drift force and random force (noise), respectively.
The noise is assumed to be Gaussian, i.e.,

⟨ξi1(t1)ξi2(t2)⟩ = 2Qi1i2δ(t1 − t2) , (2)

and its amplitude Qij , known as the Onsager matrix, is set by the fluctu-
ation–dissipation relation. One can convert the Langevin equations (1) into
the Fokker–Planck equation for the probability distribution function of the
stochastic fields, P (ψi; t) [7],

∂tP =
(
−FiP + (QijP ), j

)
, i
, (3)

where (. . .),i = δ(. . .)/δψi
1. The Fokker–Planck equation solves two prob-

lems the Langevin equation suffered from the problem of infinite noise due
to the divergence of δ-function in Eq. (2) when t1 → t2; and the problem
of multiplicative noise due to the ambiguity of the noise amplitude Qij in
the continuous limit ∆t → 0, where ∆t is the discretized time increment of
the evolution. The divergence in the first problem can be regularized an-
alytically using the renormalization techniques [8–10], while the ambiguity
in the second problem can be eliminated by specifying the discretization
prescription, e.g., Ito’s prescription as in Eq. (3).

The cumulant generating functional, W[µi], is defined through

eW[µi] =
〈
eµiψi

〉
≡
∫

DψP eµiψi , (4)

which can be expanded in a series of the external sources µis
1 This equation is invariant under Qij → Qij +Ωij , where Ωij = −Ωji is the antisym-

metric matrix obtained from the Poisson bracket of stochastic fields [7].
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W =

∞∑
n=1

1

n!
Gc
i1...inµi1 . . . µin , (5)

where the expansion coefficient Gc
i1...in

≡ Gc
n ≡ δW/δµi1 . . . δµin |µ=0 is the

nth cumulant. Using Eqs. (3) and (4), one arrives at the evolution equation
for W[µi]

∂tW = e−W (µiFi + µiµjQij) e
W , (6)

where Fi = Fi(δ/δµi), Qij = Qij(δ/δµi). Substituting Eq. (5) into (6),
one can readily obtain the evolution equation for cumulant Gc

n. However,
these equations are not in closed form, i.e., the equations for lower-order
cumulants also depend on higher-order cumulants. Fortunately, in certain
regimes where some parameters are legitimately small, these equations can
be systematically truncated. We introduced two such parameters. The
parameter ε, which is inversely proportional to the uncorrelated degrees of
freedom, controls the loop expansion. Another parameter δ, identified as
the Knudsen number in hydrodynamics, controls the gradient expansion.
Although each of them plays its own role, they are not independent and are
indeed related by ε ∼ δ3 in hydrodynamics. Assigning the following power
counting:

Fi ∼ δ2 , Qij ∼ δ2ε , Gc
n ∼ εn−1 , (7)

and keeping the leading terms (∼ δ2εn−1) that turn out to be connected tree-
level diagrams, we arrive at the truncated and iteratively solvable equations,
schematically formulated in the form of

∂tG
c
n = Ftree[{Gc

n, G
c
n−1, . . . , G

c
2, ⟨ψ⟩}] (8)

and diagrammatically represented in Fig. 1. Their explicit forms can be
found in Refs. [4, 5].
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Fig. 1. Diagrammatic representation of Eq. (8) (or Eq. (10)) for n = 2, 3, 4 in terms
of the diagrammatic ingredients introduced in this figure. The dot on the left-hand
side denotes the time derivative ∂t.
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If the variables ψi1 , . . . , ψin are fields defined locally in continuous real
space at x1, . . . ,xn, it may be more convenient to analyze Eq. (8) in the
wave-vector space. To this end, we introduced a novel multi-point Wigner
function [4]

W c
n(x, q1, . . . , qn) =

∫ [ n∏
i=1

d3yi e
−iqi·yi

]
δ(3)

(
1

n

n∑
i=1

yi

)
Gc
n(x1, . . . ,xn) ,

(9)
where qi is the wave-vector conjugate to yi ≡ xi − x and x =

∑n
i=1 xi/n.

Under this Wigner transform, we imposed the constraint
∑n

i=1 yi = 0; as
a consequence, qis are not independent and must also sum to zero after an
appropriate shift. Obviously, Eq. (9) reproduces the traditional definition
of the Winger function when n = 2. Using Eq. (9), one can represent
Eq. (8) in the wave-vector space. We defer its presentation in a specific
problem discussed in Sec. 3. For the confluent formulation of non-Gaussian
fluctuations in relativistic fluid, see Ref. [5].

3. Non-Gaussian fluctuation dynamics of diffusive charge

In this section, we apply our general formalism to a specific problem —
the evolution of diffusive charge, using the translation given by Table 1. In
this problem, the stochastic variable, charge density n(x), is defined in con-
tinuous space, the Onsager matrix Qij is related to conductivity λ through
the fluctuation–dissipation relation, and the drift force Fi is given by the
divergence of a diffusion current whose constitutive relation, λ∇α, where α
is the chemical potential per temperature, can be determined by the second
law of thermodynamics.

Table 1. Translation of general formalism to the problem of diffusive charge.

Quantities General Diffusive charge
Variable ψi n(x)

Variable index i, j, k, etc. x,y, z, etc.
Onsager matrix Qij ∇xλ∇y δ

(3)
xy

Drift force Fi ∇xλ∇xα

Applying the translation in Table 1 to Eq. (8) and using Eq. (9), one
immediately obtains the evolution equations for the diffusive charge cumu-
lants in the wave-vector space. The first few equations for n = 2, 3, 4 read
(cf. Fig. 1)

∂tW2(q1) = −2
[
γq21W2(q1) + λq1 · q2

]
12
,

∂tW3(q1, q2) = −3
[
γq21W3(q1, q2) + γ′q21W2(q2)W2(q3)

+2λ′q1 · q2W2(q3)
]
123

,



Non-Gaussian Fluctuation Dynamics 1-A47.5

∂tW
c
4 (q1, q2, q3) = −4

[
γq21W

c
4 (q1, q2, q3) + 3γ′q21W2(q2)W3(q3, q4)

+γ′′q21W2(q2)W2(q3)W2(q4) + 3λ′q1 · q2W3(q3, q4)

+3λ′′q1 · q2W2(q3)W2(q4)
]
1234

, (10)

where γ = λα′, α′ ≡ ∂α/∂n and 1 . . . n denotes the sum over all n! permuta-
tions of q1, . . . , qn divided by n!. Equations (10) are solved by W eq

2 = 1/α′,
W eq

3 = −α′′/α′3, W c,eq
4 = (3α′′2 − α′α′′′)/α′5 in equilibrium, as expected

from thermodynamic calculations.
In the critical regime where the correlation length ξ is still much less than

the fluctuation scale q−1 ≡ |q|−1 but becomes much larger than all other mi-
croscopical lengths such as the inverse of temperature, i.e., T−1 ≪ ξ ≪ q−1,
all thermodynamic and transport quantities will acquire their dependence
on the correlation length (which serves as a UV cutoff of fluctuations). For
the dynamical universality class of Model H in three dimensions, we have
approximately [5]

α(n) ∼ ξ
n−5
2 , λ(n) ∼ ξ

n+2
2 , γ(n) ∼ ξ

n−2
2 , W c

n ∼ ξ
5n−6

2 , ∂tW
c
n ∼ q2ξ

5n−8
2 .
(11)

The last relation in Eq. (11) says that all terms presented in each equation of
(10) are in the same power of correlation length, demonstrating their equal
importance near the critical point.

To see how Eqs. (10) work in practice, let us consider the problem of
baryon charge cumulant evolution in the crossover region near the QCD
critical point (see Fig. 2). Our purpose would be illustrating the robust phe-
nomenological consequence of Eqs. (10). To this end, we postulate the fol-
lowing assumptions which simplify our simulations without losing the main
features of the results. First, when establishing the dependence of the cor-
relation length ξ on baryon chemical potential µ and temperature T , we
use a mapping ξ(µ, T ) = ξIsing(r(µ, T ), h(µ, T )) from the Ising model, where
r is the Ising temperature and h is the Ising magnetic field, and assume
the mapping is linear and orthogonal around the critical point (µc, Tc), i.e.,
µ− µc ∼ r and T − Tc ∼ h. Second, the evolution trajectories, rather com-
plicated in reality, are assumed to be perpendicular to the crossover line (see
the right panel of Fig. 2). Third, the system is assumed to be in equilibrium
at the initial time ti, i.e., the moment when the system just enters the critical
region and assumed to freeze out before the final time tf , i.e., the moment
when the system leaves the critical region. Fourth, the system is assumed to
be isotropic such that W c

n’s depend only on n(n − 1)/2-independent scalar
invariants, qi · qj , i < j, which are all set to q2 for simplicity [4].

Simulating Eqs. (10) using the above assumptions, we find the contour
maps of cumulants W c

n=2,3,4 in the critical region, shown in Fig. 3. The top
panel shows the contours of cumulants in equilibrium, which are symmetric
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Fig. 2. (Color online) QCD phase diagram (left) and the zoomed-in critical re-
gion near the QCD critical point (right). The black dashed and solid curve is the
crossover and first-order phase transition line. The white lines represent the evolu-
tion trajectories of each collision event mapped to the QCD phase diagram, with
arrows indicating the time evolution direction. The yellow/pale gray dashed curve
is the freeze-out line where observables are measured. The critical region studied
in Figs. 3 and 4 is bounded by the red/gray square.

to the crossover line due to the aforementioned simplifications. The bot-
tom panel shows a particular example (i.e., q = 0.1) 2, where the cumulants
are out of equilibrium. In this case, the contours are significantly distorted

Fig. 3. Contour maps of cumulants W c
n=2,3,4 in equilibrium (top panel, q → ∞)

and out of equilibrium (bottom panel, q = 0.1).

as if they are dragged toward the time evolution direction. In other words,
although the dynamic cumulants keep approaching their instantaneous equi-
librium values, they still retain memories of their past evolution history3.

2 Here, we used arbitrary units, which are not specified thereby.
3 A similar study can be found in Ref. [11] for the homogeneous mode that is indepen-

dent of the scale q.
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Focusing on the fourth cumulant W c
4 , we plot the contours for different

q’s in Fig. 4. We find that cumulants are closer to equilibrium on a smaller
scale (e.g., q = 0.3), while retaining a longer memory of the past on a
larger scale (e.g., q = 0.1). This is a consequence of causality: on a larger
spatial scale, fluctuations need a longer time to equilibrate. When q → 0
(infinitely large scale), fluctuations will be completely suppressed due to the
conservation of charges and remain as if they were at the initial time (which,
of course, are also suppressed).

Fig. 4. (Color online) Contour maps of fourth cumulant W c
4 at q → ∞ (left),

q = 0.3 (middle) and q = 0.1 (right) in the critical region. The freeze-out line
(yellow dashed curve) is arbitrarily chosen for illustration purpose.

The fourth cumulant W c
4 is of particular interest to us, since its equilib-

rium value possesses more sensitivity to the critical point comparing to the
lower-order cumulants. If one reads off its value along the freeze-out line
(yellow dashed curve) in Fig. 4, one finds its expected non-monotonicity as
a function of baryon chemical potential in Fig. 5. Noting that the baryon
chemical potential is inversely related to the collision energy, Fig. 5 is qual-
itatively consistent with the experiment data reported in Ref. [3]. More
interestingly, one finds that the curve for smaller q (red/black) might be
shifted toward large baryon chemical potential more significantly compared
to the one for larger q (blue/gray). That is to say, the non-equilibrium effect,
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Fig. 5. The dependence of W c
4 on baryon chemical potential µ along the freeze-out

line in Fig. 4, at q → ∞ (equilibrium), q = 0.3 and q = 0.1 respectively.
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largely coming from the fluctuations with wave vectors around q ∼ 0.1–0.3,
might shift the curve predicted by the equilibrium theory toward the lower
collision energy. As a reminder, one should not compare the values here
quantitatively, as our results are only for illustration purpose.

4. Summary

In this contribution, we reviewed a general deterministic approach to
non-Gaussian fluctuation dynamics. This novel approach is established
with controllable perturbative loop/gradient expansion and the multi-point
Wigner function. In this approach, we derived the general evolution equa-
tions for cumulants and demonstrated their robust phenomenological im-
plication via the problem of diffusive charge near the QCD critical point.
Our numerical results suggest that the non-equilibrium effect to cumulants
needs to be taken into account for a rigorous quantitative comparison with
the experimental results. As for the future, the cumulant evolution equa-
tions need to be implemented in a more realistic setup, and our formalism
is yet to incorporate all non-Gaussian hydrodynamic fluctuations with their
freeze-out prescriptions [5, 8, 9, 12].

This work is supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics, within the framework of the Beam Energy
Scan Theory (BEST) Topical Collab. and grant No. DE-FG0201ER41195.
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