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A new approach is presented to explore the singularity structure of
lattice QCD in the complex chemical potential plane. Our method can
be seen as a combination of the Taylor expansion and analytic continu-
ation approaches. Its novelty lies in using rational (Padé) approximants
for studying the Lee–Yang edge singularities. We present a calculation of
the cumulants of the net-baryon number as a function of a purely imag-
inary baryon number chemical potential, obtained with highly improved
staggered quarks at temporal lattice extent of Nτ = 4, 6. We construct
various rational function approximations of the lattice data and determine
their poles (and roots) in the complex plane. We compare the position of
the closest pole to the theoretically expected position of the Lee–Yang edge
singularity. At high temperature, we find scaling that is in accordance with
the expected power law behavior of the Roberge–Weiss transition, while a
different behavior is found for T ≲ 170 MeV.
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1. Introduction

For the understanding and description of the fireball evolution in ultrarel-
ativistic nucleus–nucleus collisions, knowledge of the QCD equation of state
and the QCD phase diagram is essential. Lattice QCD calculations, which
are very successful at nonzero temperature T > 0 and vanishing net-baryon
chemical potential µB = 0, are unfortunately hampered by the infamous
sign problem at µB > 0. Many calculation strategies have been framed and
refined in order to overcome the problem, but a working solution for calcu-
lations at finite µB has not been found so far. The most used methods are
the Taylor expansion around µB = 0 [1] and calculations at the purely imag-
inary chemical potential µB = iµI

B [2, 3] along with analytic continuation.
Here, we present a new method which is a combination of the above. We
calculate the Taylor expansion coefficients at various values of the imaginary
chemical potential µI

B and base our analytic continuation to real µB on a
multi-point Padé resummation [4, 5].

The Padé approximants are rational functions and thus feature poles in
the complex chemical potential plane. The closest pole might be identified
with the Lee–Yang edge (LYE) singularity in the vicinity of a critical point
[6]. In terms of the scaling variable z = t/h1/βδ, where t, h are the temper-
ature and magnetic field-like variables, and β, δ are critical exponents, the
LYE singularity has a universal position z = zc [7]. We will make use of
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Fig. 1. Expected scaling of the LYE singularity in the vicinity of the RW transition,
the chiral transition, and the QCD critical endpoint. Also shown are the LYE
singularities determined from lattice data: data points are from the temperature
range T ∈ [170–200] MeV (Nτ = 4, 6), while confidence ellipses are indicated for
lower temperatures (Nτ = 6).
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this universal position in the vicinity of the Roberge–Weiss (RW) transition,
the chiral transition, and the QCD critical end point to predict some non-
universal constants and the generic scaling of the LYE in the QCD phase
diagram. A schematic plot of the expected temperature scaling is shown in
Fig. 1. With varying temperature, the LYE associated with a specific phase
transition is expected to move within the respective band. The ultimate
goal is the prediction of the QCD critical end point, which is reached when
the imaginary part of the LYE vanishes.

2. Lattice data and multi-point Padé analysis

We use (2+1)-flavors of highly improved staggered quarks (HISQ) [8] for
our simulations. The partition function can be written as

Z =

∫
DU det

[
M

(
ml, iµ

I
l

)]2/4
det

[
M

(
ms, iµ

I
s

)]1/4
e−SG(U) , (1)

where M(m, iµI) represents the fermion matrix of a HISQ flavor with mass m
and chemical potential µ = iµI. The first determinant represents the two
degenerate light flavors (up and down quarks), the second one stands for
the strange quarks. The respective quark masses have been tuned to yield
physical meson masses in the vacuum. Details on the scale setting and lines
of constant physics have been adopted from HotQCD [9]. The chemical
potentials are kept equal for simplicity (µI

l = µI
s) and are varied between 0

and iπ/3, which translates into µI
B ∈ [0, iπ]. Configurations are generated

using the SIMULATeQCD software [10].
Our observables are derivatives of the dimensionless pressure p/T 4 =

lnZ/(V T 3) with respect to µ̂ = µ/T . In particular, we define cumulants of
the net-baryon number χB

n as

χB
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Due to the symmetries of the partition function, its derivatives exhibit a
distinct pattern. Besides the inherited periodicity in iµI

B, we find that along
the imaginary chemical potential axis, even derivatives are even functions
of iµ̂I

B and purely real, and odd derivatives are odd functions and purely
imaginary. The first three cumulants are shown in Fig. 2.

We approximate the net-baryon density ImχB
1 (µ

I
B) by a rational function

of the form of
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Fig. 2. First three cumulants of the net-baryon number for three different temper-
atures as a function of an imaginary chemical potential. The data are obtained
from calculations on 243 × 4 lattices.

where Pm, Qn are polynomials of the order of m,n respectively. After mul-
tiplying with the denominator and demanding consistency with our data for
χB
k , with k ∈ {1, 2, 3}, we arrive at a linear system which we can solve [4].

In this way, the expansion of the rational approximation agrees with our
measured Taylor expansion at each of our simulation points. We also use
different methods to obtain rational approximations, based on a generalized
χ2-fitting approach and a variable transformation to the fugacity plan, which
all yield similar results [4].

3. Critical scaling

Now, we analyze the positions of the poles and roots of our rational
approximations in the complex µB plane. We find for high temperatures
(T ∈ [170, 200] MeV) that among many canceling pairs of roots and poles
and the trivial roots at µB = ikπ, k ∈ N, the poles and roots are alternating
along the line µB = iπ + µR

B. This is indeed the expected representation
of the branch cut in the scaling function of the order parameter by a finite
order [m,n]-Padé. We associate the closest pole of this structure with the
LYE of the RW transition. The scaling of the real part of the LYE with
temperature is shown in Fig. 3 (left).
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Fig. 3. Left: Scaling of the real part of the LYE with temperature. Lines are scaling
fits to the Nτ = 4 and 6 data, respectively. Right: Continuum estimate of the RW
transition temperature TRW, based on the scaling fists on the left. Also shown is a
previous continuum extrapolation from the literature [11].

When lowering T from the RW transition temperature TRW, where the
LYE is located on the imaginary axis at µB = iπ, we find that the LYE
moves into the complex plane and also obeys the expected scaling law [4]

ReµLY ∝
(
TRW − T

TRW

)βδ

. (4)

From the fits to the Nτ = 4, 6 data, using Z(2)-universal exponents βδ ≈
1.56, we extract the RW transition temperature TRW. The Nτ = 4 result is
consistent with determinations from the peak positions of the Polyakov loop
and chiral susceptibilities, using the same lattice action [12]. A preliminary
continuum estimate, which is shown in Fig. 3 (right), is in good agreement
with a previous continuum extrapolation from [11] using the stout improved
staggered action.

Interestingly, for temperatures below T ≲ 170 MeV, we find a qualitative
change in the behavior of the LYE: the imaginary part becomes substantially
different from iπ (see Fig. 1) [13]. It remains to be further analyzed whether
our LYE data indicate chiral scaling and/or scaling which is related to the
QCD critical point. The latter would give us a handle on the determination
of its location [14]. Some indications of chiral scaling in the temperature
range of T ∈ [170, 180] MeV are found in the behavior of the Fourier coeffi-
cients of the baryon number density ImχB

1 (µ
I
B) [15].
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