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Correlations between multiparticle cumulants and mean transverse mo-
mentum in proton–proton (pp), proton–lead (pPb), and peripheral lead–
lead (PbPb) collisions are presented as a function of charged-particle multi-
plicity. The data, corresponding to integrated luminosities of 28.6 pb−1 for
pp at

√
s = 13 TeV, 186 nb−1 for pPb at √s

NN
= 8.16 TeV, and 0.58 nb−1

for PbPb at √
s
NN

= 5.02 TeV, were collected using the CMS detector
at the LHC. The two- and four-particle cumulants for the second- and
third-order Fourier harmonics are correlated with the mean transverse mo-
mentum on an event-by-event basis. Sign changes are observed when using
two-particle cumulants in pp and pPb systems. No sign change is observed
as pseudorapidity gaps between the two subevents increase. Predictions
based on color-glass condensate and hydrodynamic models are compared
to the experimental results.
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1. Introduction

A hot and dense medium known as the quark–gluon plasma (QGP) has
been extensively studied using heavy-ion collisions at the Relativistic Heavy-
Ion Collider and the Large Hadron Collider [1]. The azimuthal anisotropy
of the produced particles in these collisions is a powerful tool to study the
collective dynamics and transport properties of the QGP [2]. This anisotropy
is characterized by the Fourier coefficients (vn) of the particle azimuthal
angle (ϕ) distribution dN/dϕ ∝ 1+2

∑
n vn cos[n(ϕ−Ψn)], where vn and Ψn

represent the amplitude and phase of the nth-order azimuthal flow vector [3].
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In a hydrodynamic picture, the Fourier harmonics are the result of final-state
effects since they come from the final-state response to the initial geometry
of the colliding system [4]. In the past decade, a remarkable similarity in
the azimuthal anisotropy signatures has been observed between heavy-ion
collisions and smaller collision systems, such as proton–proton (pp), proton–
lead (pPb), and peripheral lead–lead (PbPb) [5]. The similarity holds even
for multiparticle correlations, which can suppress “nonflow” effects from few
particle correlations. The observed anisotropy in small systems can originate
from the final-state response to the initial geometry, as well as from initial-
state effects as described by the color-glass condensate effective theory [6].
The dominant origin of the azimuthal anisotropy in small systems is still
under active discussion [1, 5] because there is not a clear observable that
can distinguish the final-state effects from the initial-state effects.

In addition to generating final-state azimuthal anisotropy from initial
spatial anisotropy, hydrodynamic response to the overall size of the initial
overlapping area of the two colliding particles results in radial flow, which is
reflected by the mean transverse momentum [pT] on an event-by-event basis.
The correlations between radial and anisotropic flow can be quantified using
a modified Pearson correlator [7]

ρ
(
v2n, [pT]

)
=

cov
(
v2n, [pT]

)√
Var (v2n)dyn

√
Var ([pT])dyn

, (1)

where cov(v2n, [pT]) is the covariance between v2n and [pT], and Var(v2n)dyn
and Var([pT])dyn are the dynamical variances of the v2n and [pT] distributions,
respectively. The dynamical variances remove the autocorrelation effects
when compared to variances of v2n and [pT] distributions. It was found that
this correlator is sensitive to the degree of subnucleon fluctuations, and its
strength can be traced back to the initial density profile [8].

Recently, it was suggested that this correlator might be able to distin-
guish between initial- and final-state effects [9]. A characteristic sign change
of the modified Pearson correlator as a function of charged particle multiplic-
ity is predicted in small collision systems. No sign change is present without
the initial-state effects suggested by color-glass condensate effective theory.
However, it was found that in PYTHIA 8, a sign change exists due to non-
flow effects [10, 11]. Measurements of the correlator with proper treatment
of nonflow effects, and corresponding searches for correlator sign changes in
low multiplicity pp, pPb, and peripheral PbPb collisions can provide insights
into the origin of the azimuthal correlations in small systems.

In these proceedings, the correlators are measured for the first time using
four-particle cumulants instead of two-particle correlation techniques in pp,
pPb, and peripheral PbPb collisions. Nonflow effects are further studied
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using different pseudorapdity (η) gap sizes. In addition, the correlators for
the third Fourier harmonic are presented for the first time in the three small
collision systems as a function of charged-particle multiplicity.

2. Multiparticle cumulants and mean transverse
momentum correlations

All previous studies of the correlator use v2n from two-particle correlations
in Eq. (1). The v2n term can be rewritten as the two-particle cumulant
since cn{2} =

〈
ein(ϕ1−ϕ2)

〉
= vn{2}2 [12]. To remove nonflow in the two-

particle vn, all previous measurements applied the subevent method which
introduces subevents that are separated in different η ranges [13, 14]. With
two subevents for cn{2}, the covariance of the correlator in Eq. (1) is

cov(cn{2}, [pT]) = Re
〈∑

a,b

expin(ϕa−ϕb)
(
[pT]− ⟨[pT]⟩

)〉
, (2)

where ϕa and ϕb are the azimuthal angles of particles a and b in subevents
A and B, respectively. The ⟨[pT]⟩ is the average [pT] in all the events at a
certain multiplicity range. We select tracks with η < −0.75 to be subevent A,
while tracks with η > 0.75 belong to subevent B. Tracks in the middle region
|η| < 0.5 are used to obtain [pT] in each event. The selections make sure
subevents A and B are symmetric in η, and that there is a minimum η gap
of 1.5 between them to reduce nonflow effects.

The remaining nonflow problem is addressed with two approaches. In the
first approach, we increase the minimum η gap between subevents A and B
from 1.5 to 2.0, by changing c2{2} analysis using particles in |η| > 0.75
to |η| > 1.0. In the second approach, we extend the current observable by
replacing c2{2} with four-particle cumulant c2{4} [15]. Particles in |η| > 0.75
are divided into three equal η regions to obtain c2{4} in each event. The
event-by-event c2{4} is then correlated with [pT] in the same event. The
results are presented as a function of tracking efficiency corrected multiplicity
Nch using particles within 0.5 < pT < 5 GeV and |η| < 2.4. Details about
the CMS detector and this analysis can be found in [15, 16].

3. Results for the covariances and correlators

The measurements of covariances from two- and four-particle correla-
tions for harmonics n = 2 and n = 3 in 13 TeV pp, 8.16 TeV pPb, and
5.02 TeV PbPb collisions are presented in Fig. 1. In both pp and pPb col-
lisions, cov(c2{2}, [pT]) has a sign change from positive to negative as Nch

increases. The results are consistent with the prediction of a sign change
feature from the color-glass condensate model. To compare cov(c2{2}, [pT])



1-A67.4 S. Tuo

| < 2.4)η < 5.0 GeV, |
T

 (0.5 < pchN 0 20 40 60 80 100

])
T

, [
p

{n
}

2
co

v(
c

-0.05

0

0.05

-310× pp 13 TeV

 4×]) 
T

, [p{4}
2

cov(c
])

T
, [p{2}

2
cov(c

0 20 40 60 80 100

])
T

, [
p

{n
}

3
co

v(
c

-0.02

-0.01

0

0.01

-310×
 4×]) 

T
, [p{4}

3
cov(c

])
T

, [p{2}
3

cov(c
 4×]) 

T
, [p{4}

3
cov(c

])
T

, [p{2}
3

cov(c
 4×]) 

T
, [p{4}

3
cov(c

])
T

, [p{2}
3

cov(c

CMS Preliminary
 < 5 GeV

T
0.5 < p

| < 2.4)η < 5.0 GeV, |
T

 (0.5 < pchN 0 50 100 150 200
])

T
, [

p
{n

}
2

co
v(

c

pPb 8.16 TeV

0 50 100 150 200

])
T

, [
p

{n
}

3
co

v(
c

-0.02

-0.01

0

0.01

-310×

Centrality: 20-60%

| < 2.4)η < 5.0 GeV, |
T

 (0.5 < pchN 0 100 200 300 400

])
T

, [
p

{n
}

2
co

v(
c

Centrality: 0-20%

PbPb 5.02 TeV

0 100 200 300 400

])
T

, [
p

{n
}

3
co

v(
c

-0.02

-0.01

0

0.01

-310×

| < 2.4)η < 5.0 GeV, |
T

 (0.5 < pchN

Fig. 1. The covariances of cumulants from two- and four-particle correlations and
[pT] as a function of Nch in 13 TeV pp (left), 8.16 TeV pPb (middle), and 5.02 TeV
PbPb (right). The top (bottom) panels are for harmonic n = 2 (n = 3). The
error bars correspond to statistical uncertainties, while the shaded areas denote
the systematic uncertainties. The figure is taken from Ref. [15].

and cov(c2{4}, [pT]) on the same scale, the values of cov(c2{4}, [pT]) are
multiplied by 4 in all the panels. No clear sign change is observed for
cov(c2{4}, [pT]) in both pp and pPb with the current statistical precision. As
Nch decreases in PbPb, the values of cov(c2{2}, [pT]) change from positive
to negative, reach a minimum at Nch = 60, and then approach zero at the
lowest Nch range.

The correlator with a larger η range (|η| > 1.0) for the cumulant is
shown in Fig. 2. In both pp and pPb collisions, the sign change at low Nch

disappears with the larger η gap between the two subevents, which is similar
to calculations using PYTHIA 8 [17]. The predictions in pPb collisions at
5.02 TeV from the IP-Glasma+MUSIC+UrQMD model [9] with 0.5 < pT <
5 GeV are compared to the data. This model includes gluon saturation in the
initial-state followed by hydrodynamic evolution and hadronic interactions.
The characteristic sign change of the correlator predicted by this model is
observed at the same Nch location for |η| > 0.75, but it disappears when
using |η| > 1.0, which leads to less nonflow. The results indicate that after
removing more nonflow, the color-glass condensate signal is not observed.
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Fig. 2. (Color online) The correlator using two-particle cumulant from |η| > 0.75

and |η| > 1.0 as a function of Nch in 13 TeV pp (left), 8.16 TeV pPb (middle), and
5.02 TeV PbPb (right). The top (bottom) panels are for harmonic n = 2 (n = 3).
The error bars correspond to statistical uncertainties, while the shaded areas denote
the systematic uncertainties. Calculations from PYTHIA 8 (left higher/red and
lower/black lines), and IP-Glasma+MUSIC+UrQMD (middle black/blue lines) [9]
are compared to the data. The figure is taken from Ref. [15].

4. Summary

In summary, apparent sign changes in the modified Pearson correlators
are observed as a function of charged-particle multiplicity when using two-
particle cumulants with |η| > 0.75, making the minimum η gap of 1.5, in
pp and pPb systems. The sign changes disappear when the nonflow is sup-
pressed using |η| > 1.0, making the minimum η gap of 2.0. The correlations
of four-particle cumulants c2{4} with the mean pT show no sign change,
similar to the two-particle correlation results with a larger η gap. These
high-precision data and the observables employing multiparticle correlators
shown here provide new insight into the origin of azimuthal anisotropy in
small collision systems.
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